Skip to main content
Log in

Tactical tuning of mechanical and thermo-mechanical properties of glass fiber/epoxy multi-scale composites by incorporating N-(2-aminoethyl)-3-aminopropyl trimethoxysilane functionalized carbon nanotubes

  • Original Research
  • Published:
Iranian Polymer Journal Aims and scope Submit manuscript

Abstract

The current study explores the potential of N-(2-aminoethyl)-3-aminopropyl trimethoxysilane (AEAPTS) functionalized single-wall carbon nanotubes (f-SWCNTs) as interface modifier to enhance thermomechanical characteristics of glass fiber/epoxy (GF/epoxy) composites. GF/epoxy laminates each embedded with 0.1, 0.3 and 0.5 wt% of pristine SWCNTs (p-SWCNTs) and f-SWCNTs, respectively, were fabricated using hot press technique. Fourier transform infrared spectroscopy demonstrated successful attachment of AEAPTS on SWCNTs while thermogravimetric analysis assessed the grafting density of AEAPTS. Tensile strength, modulus and interlaminar shear strength increased by ~ 27, ~ 14 and ~ 43%, respectively, at 0.5 wt% f-SWCNTs loading. However, no marked improvements were observed in mechanical properties with p-SWCNTs addition. Scanning electron microscopy revealed excellent dispersibility of f-SWCNTs in an epoxy matrix. Moreover, fractographic analysis revealed excellent compatibility of GF and epoxy resin in the presence of f-SWCNTs which accounts for improved interfacial adhesion. Dynamic mechanical thermal analysis showed ~ 40% increment in storage modulus at 25 °C with 0.5 wt% f-SWCNTs content whereas the glass transition temperature remarkably improved by ~ 13 °C as compared to the neat composite (~ 136 °C). The cross-link density increased up to ~ 51% with f-SWCNTs addition implying that grafted AEAPTS moieties undergo a three-way cross-link reaction with epoxide groups of epoxy and silanes of glass fibers. Such multi-scale composites with enhanced strength and thermomechanical stability can replace metallic components in various engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Güler T, Demirci E, Yıldız AR, Yavuz U (2018) Lightweight design of an automobile hinge component using glass fiber polyamide composites. Mater Test 60:306–310

    Google Scholar 

  2. Chia CC, Gan CS, Gomes C, Mazlan N, Gomes A (2018) Lightning damages in glass fiber-epoxy composite material used for aerospace applications. In: 2018 34th int conf. lightning protection (ICLP), IEEE, pp 1–4

  3. Zhang H, Avdelidis NP, Osman A, Ibarra-Castanedo C, Sfarra S, Fernandes H, Matikas TE, Maldague XP (2018) Enhanced infrared image processing for impacted carbon/glass fiber-reinforced composite evaluation. Sensors 18:45

    Google Scholar 

  4. Koziol M (2019) Evaluation of classic and 3D glass fiber reinforced polymer laminates through circular support drop weight tests. Compos B Eng 168:561–571

    CAS  Google Scholar 

  5. Tzounis L, Liebscher M, Tzounis A, Petinakis E, Paipetis A, Mäder E, Stamm M (2016) CNT-grafted glass fibers as a smart tool for epoxy cure monitoring, UV-sensing and thermal energy harvesting in model composites. RSC Adv 6:55514–55525

    CAS  Google Scholar 

  6. Raju B, Manjunatha L, Jagadeeswaran N (2020) Fabrication & characterization of ZnS micro particulate filled glass and jute fibre reinforced hybrid polymer composites. Mater Today 20:125–133

    CAS  Google Scholar 

  7. Arndt CM, DaBell P, Czabaj MW (2019) Microscale investigation of transverse tensile failure of fiber-reinforced polymer composites. Mechanics of composite, hybrid and multifunctional materials, vol 5. Springer, Berlin, pp 209–212

    Google Scholar 

  8. Choudhury P, Halder S, Khan NI, Wang J, Pandey KM (2017) Enhanced crack suppression ability of hybrid glass fiber reinforced laminated composites fabricated using GNP/epoxy system by optimized UDM parameters. Ultrason Sonochem 39:174–187

    CAS  PubMed  Google Scholar 

  9. Xin W, Sarasini F, Tirillò J, Bavasso I, Sbardella F, Lampani L, De Rosa I (2020) Impact and post-impact properties of multiscale carbon fiber composites interleaved with carbon nanotube sheets. Compos B Eng 183:107711

    CAS  Google Scholar 

  10. Jahromi Z, Afzali M, Mostafavi A, Nekooie R, Mohamadi M (2020) Electropolymerization of thionine as a stable film along with carbon nanotube for sensitive detection of tetracycline antibiotic drug. Iran Polym J 29:241–251

    CAS  Google Scholar 

  11. Tzounis L, Zappalorto M, Panozzo F, Tsirka K, Maragoni L, Paipetis AS, Quaresimin M (2019) Highly conductive ultra-sensitive SWCNT-coated glass fiber reinforcements for laminate composites structural health monitoring. Compos B Eng 169:37–44

    CAS  Google Scholar 

  12. Jelmy E, Lakshmanan M, Kothurkar NK (2019) Microwave absorbing behavior of glass fiber reinforced MWCNT-PANi/epoxy composite laminates. Mater Today 26:36–43

    Google Scholar 

  13. Singh K, Chaudhary S, Venugopal R (2019) Enhancement of flexural strength of glass fiber reinforced polymer laminates using multiwall carbon nanotubes. Polym Eng Sci 59:E248–E261

    CAS  Google Scholar 

  14. Qiu J, Zhang C, Wang B, Liang R (2007) Carbon nanotube integrated multifunctional multiscale composites. Nanotechnology 18:275708

    Google Scholar 

  15. Zhang X, Wang P, Neo H, Lim G, Malcolm AA, Yang E-H, Yang J (2016) Design of glass fiber reinforced plastics modified with CNT and pre-stretching fabric for potential sports instruments. Mater Des 92:621–631

    CAS  Google Scholar 

  16. Gaurav A, Singh K (2018) ILSS improvement of quasi-isotropic glass fiber reinforced epoxy laminate enhanced with arc discharged multi-walled carbon nanotubes. Mater Today 5:8638–8644

    CAS  Google Scholar 

  17. Liu Y, Yang J-P, Xiao H-M, Qu C-B, Feng Q-P, Fu S-Y, Shindo Y (2012) Role of matrix modification on interlaminar shear strength of glass fibre/epoxy composites. Compos B Eng 43:95–98

    CAS  Google Scholar 

  18. Hsieh TH, Huang YS, Shen MY (2018) Carbon nanotube size effect on the mechanical properties and toughness of nanocomposites. Polym Compos 39:E1072–E1086

    CAS  Google Scholar 

  19. Feng K, Hung G-Y, Liu J, Li M, Zhou C, Liu M (2018) Fabrication of high performance superhydrophobic coatings by spray-coating of polysiloxane modified halloysite nanotubes. Chem Eng J 331:744–754

    CAS  Google Scholar 

  20. Guadagno L, De Vivo B, Di Bartolomeo A, Lamberti P, Sorrentino A, Tucci V, Vertuccio L, Vittoria V (2011) Effect of functionalization on the thermo-mechanical and electrical behavior of multi-wall carbon nanotube/epoxy composites. Carbon 49:1919–1930

    CAS  Google Scholar 

  21. Tang L-C, Zhang H, Han J-H, Wu X-P, Zhang Z (2011) Fracture mechanisms of epoxy filled with ozone functionalized multi-wall carbon nanotubes. Compos Sci Technol 72:7–13

    CAS  Google Scholar 

  22. Price GJ, Nawaz M, Yasin T, Bibi S (2018) Sonochemical modification of carbon nanotubes for enhanced nanocomposite performance. Ultrason Sonochem 40:123–130

    CAS  PubMed  Google Scholar 

  23. Yung CS, Tomlin NA, Heuerman K, Keller MW, White MG, Stephens M, Lehman JH (2018) Plasma modification of vertically aligned carbon nanotubes: superhydrophobic surfaces with ultra-low reflectance. Carbon 127:195–201

    CAS  Google Scholar 

  24. Ren F, Zhu G, Wu G, Wang K, Cui X (2018) Effects of surfactant treatment on mechanical and microwave absorbing properties of graphene nanosheets/multiwalled carbon nanotubes/cyanate ester composites. Polym Compos 39:110–118

    CAS  Google Scholar 

  25. Paraskar P, Bari P, Mishra S (2020) Influence of amine functionalized graphene oxide on mechanical and thermal properties of epoxy matrix composites. Iran Polym J 29:47–55

    CAS  Google Scholar 

  26. Zhang Q, Wu J, Gao L, Liu T, Zhong W, Sui G, Zheng G, Fang W, Yang X (2016) Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites. Mater Des 94:392–402

    CAS  Google Scholar 

  27. Suhas D, Aminabhavi T, Raghu A (2014) para-Toluene sulfonic acid treated clay loaded sodium alginate membranes for enhanced pervaporative dehydration of isopropanol. Appl Clay Sci 101:419–429

    CAS  Google Scholar 

  28. Rahman M, Zainuddin S, Hosur M, Robertson C, Kumar A, Trovillion J, Jeelani S (2013) Effect of NH2-MWCNTs on crosslink density of epoxy matrix and ILSS properties of e-glass/epoxy composites. Compos Struct 95:213–221

    Google Scholar 

  29. Mishra K, Singh RP (2019) Effect of APTMS modification on multiwall carbon nanotube reinforced epoxy nanocomposites. Compos B Eng 162:425–432

    CAS  Google Scholar 

  30. Li S, Yao Y (2019) Synergistic improvement of epoxy composites with multi-walled carbon nanotubes and hyperbranched polymers. Compos B Eng 165:293–300

    CAS  Google Scholar 

  31. Khosravi H, Eslami-Farsani R (2018) Reinforcing effect of surface-modified multiwalled carbon nanotubes on flexural response of E-glass/epoxy isogrid-stiffened composite panels. Polym Compos 39:E677–E686

    CAS  Google Scholar 

  32. Zhu J, Kim J, Peng H, Margrave JL, Khabashesku VN, Barrera EV (2003) Improving the dispersion and integration of single-walled carbon nanotubes in epoxy composites through functionalization. Nano Lett 3:1107–1113

    CAS  Google Scholar 

  33. Zhu M, Lerum MZ, Chen W (2011) How to prepare reproducible, homogeneous, and hydrolytically stable aminosilane-derived layers on silica. Langmuir 28:416–423

    PubMed  PubMed Central  Google Scholar 

  34. Mashhadzadeh AH, Fereidoon A, Ahangari MG (2017) Surface modification of carbon nanotubes using 3-aminopropyltriethoxysilane to improve mechanical properties of nanocomposite based polymer matrix: experimental and density functional theory study. Appl Surf Sci 420:167–179

    Google Scholar 

  35. Avilés F, Sierra-Chi C, Nistal A, May-Pat A, Rubio F, Rubio J (2013) Influence of silane concentration on the silanization of multiwall carbon nanotubes. Carbon 57:520–529

    Google Scholar 

  36. He W, Wu D, Li J, Zhang K, Xiang Y, Long L, Qin S, Yu J, Zhang Q (2013) Surface modification of colloidal silica nanoparticles: controlling the size and grafting process. Bull Korean Chem Soc 34:2747–2752

    CAS  Google Scholar 

  37. Pistor V, Ornaghi FG, Ornaghi HL, Zattera AJ (2012) Dynamic mechanical characterization of epoxy/epoxycyclohexyl–POSS nanocomposites. Mater Sci Eng A 532:339–345

    CAS  Google Scholar 

  38. Chee SS, Jawaid M, Sultan M, Alothman OY, Abdullah LC (2019) Thermomechanical and dynamic mechanical properties of bamboo/woven kenaf mat reinforced epoxy hybrid composites. Compos B Eng 163:165–174

    CAS  Google Scholar 

  39. Reddy KR, Raghu AV, Jeong HM (2008) Synthesis and characterization of novel polyurethanes based on 4,4′-{1,4-phenylenebis[methylylidenenitrilo]} diphenol. Polym Bull 60:609–616

    CAS  Google Scholar 

  40. Zhang BB, Chen Y, Wang F, Hong RY (2015) Surface modification of carbon black for the reinforcement of polycarbonate/acrylonitrile–butadiene–styrene blends. Appl Surf Sci 351:280–288

    CAS  Google Scholar 

  41. Raghu A, Gadaginamath G, Mathew N, Halligudi S, Aminabhavi T (2007) Synthesis, characterization, and acoustic properties of new soluble polyurethanes based on 2,2′-[1,4-phenylenebis(nitrilomethylylidene) diphenol and 2,2′-[4,4′-methylene-di-2-methylphenylene-1, 1′-bis(nitrilomethylylidene)] diphenol. J Appl Polym Sci 106:299–308

    CAS  Google Scholar 

  42. Li J, Cui J, Yang J, Ma Y, Qiu H, Yang J (2016) Silanized graphene oxide reinforced organofunctional silane composite coatings for corrosion protection. Prog Org Coat 99:443–451

    CAS  Google Scholar 

  43. Goetz SA, Nguyen DT, Esser-Kahn AP (2016) Surface modification of carbon black nanoparticles enhances photothermal separation and release of CO2. Carbon 105:126–135

    CAS  Google Scholar 

  44. Hossain M, Chowdhury M, Salam M, Jahan N, Malone J, Hosur M, Jeelani S, Bolden N (2015) Enhanced mechanical properties of carbon fiber/epoxy composites by incorporating XD-grade carbon nanotube. J Compos Mater 49:2251–2263

    CAS  Google Scholar 

  45. Rachmadini Y, Tan V, Tay T (2010) Enhancement of mechanical properties of composites through incorporation of CNT in VARTM: a review. J Reinf Plast Compos 29:2782–2807

    CAS  Google Scholar 

  46. Nabinejad O, Sujan D, Rahman ME, Liew WYH, Davies IJ (2018) Hybrid composite using natural filler and multi-walled carbon nanotubes (MWCNTs). Appl Compos Mater 25:1323–1337

    CAS  Google Scholar 

  47. Demircan G, Kisa M, Ozen M, Aktas B (2020) Surface-modified alumina nanoparticles-filled aramid fiber-reinforced epoxy nanocomposites: preparation and mechanical properties. Iran Polym J 29:253–264

    CAS  Google Scholar 

  48. Li J, Wu Z, Huang C, Li L (2014) Multiscale carbon nanotube-woven glass fiber reinforced cyanate ester/epoxy composites for enhanced mechanical and thermal properties. Compos Sci Technol 104:81–88

    CAS  Google Scholar 

  49. Jouyandeh M, Shabanian M, Khaleghi M, Paran SMR, Ghiyasi S, Vahabi H, Formela K, Puglia D, Saeb MR (2018) Acid-aided epoxy-amine curing reaction as reflected in epoxy/Fe3O4 nanocomposites: chemistry, mechanism, and fracture behavior. Prog Org Coat 125:384–392

    CAS  Google Scholar 

  50. Wang L, Tan Y, Wang X, Xu T, Xiao C, Qi Z (2018) Mechanical and fracture properties of hyperbranched polymer covalent functionalized multiwalled carbon nanotube-reinforced epoxy composites. Chem Phys Lett 706:31–39

    CAS  Google Scholar 

  51. Sharma S, Lakkad S (2011) Effect of CNTs growth on carbon fibers on the tensile strength of CNTs grown carbon fiber-reinforced polymer matrix composites. Compos Part A Appl Sci Manuf 42:8–15

    Google Scholar 

  52. Vautard F, Ozcan S, Meyer H (2012) Properties of thermo-chemically surface treated carbon fibers and of their epoxy and vinyl ester composites. Compos Part A Appl Sci Manuf 43:1120–1133

    CAS  Google Scholar 

  53. Yu B, Jiang Z, Tang X-Z, Yue CY, Yang J (2014) Enhanced interphase between epoxy matrix and carbon fiber with carbon nanotube-modified silane coating. Compos Sci Technol 99:131–140

    CAS  Google Scholar 

  54. Dhakate S, Chaudhary A, Gupta A, Pathak A, Singh B, Subhedar K, Yokozeki T (2016) Excellent mechanical properties of carbon fiber semi-aligned electrospun carbon nanofiber hybrid polymer composites. RSC Adv 6:36715–36722

    CAS  Google Scholar 

  55. Wu G, Ma L, Liu L, Wang Y, Xie F, Zhong Z, Zhao M, Jiang B, Huang Y (2016) Interface enhancement of carbon fiber reinforced methylphenylsilicone resin composites modified with silanized carbon nanotubes. Mater Des 89:1343–1349

    CAS  Google Scholar 

  56. Díez-Pascual AM, Ashrafi B, Naffakh M, González-Domínguez JM, Johnston A, Simard B, Martinez MT, Gómez-Fatou MA (2011) Influence of carbon nanotubes on the thermal, electrical and mechanical properties of poly(ether ether ketone)/glass fiber laminates. Carbon 49:2817–2833

    Google Scholar 

  57. Yang X, Wang C, Li S, Huang K, Li M, Mao W, Cao S, Xia J (2017) Study on the synthesis of bio-based epoxy curing agent derived from myrcene and castor oil and the properties of the cured products. RSC Adv 7:238–247

    CAS  Google Scholar 

  58. Dydek K, Latko-Durałek P, Boczkowska A, Sałaciński M, Kozera R (2019) Carbon fiber reinforced polymers modified with thermoplastic nonwovens containing multi-walled carbon nanotubes. Compos Sci Technol 173:110–117

    CAS  Google Scholar 

  59. Ipakchi H, Shegeft A, Rezadoust AM, Zohuriaan-Mehr MJ, Kabiri K, Sajjadi S (2020) Bio-resourced furan resin as a sustainable alternative to petroleum-based phenolic resin for making GFR polymer composites. Iran Polym J 29:287–299

    CAS  Google Scholar 

  60. Li W, Dichiara A, Zha J, Su Z, Bai J (2014) On improvement of mechanical and thermo-mechanical properties of glass fabric/epoxy composites by incorporating CNT–Al2O3 hybrids. Compos Sci Technol 103:36–43

    CAS  Google Scholar 

  61. Vasconcelos da Silva L, Pezzin SH, Cerqueira Rezende M, Campos Amico S (2016) Glass fiber/carbon nanotubes/epoxy three-component composites as radar absorbing materials. Polym Compos 37:2277–2284

    CAS  Google Scholar 

Download references

Acknowledgements

The authors express their cordial gratitude to the team of Department of Polymer Engineering and Technology, University of the Punjab, for their cooperation during the execution of this research project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahd Jamshaid.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jamshaid, F., Khan, R., Islam, A. et al. Tactical tuning of mechanical and thermo-mechanical properties of glass fiber/epoxy multi-scale composites by incorporating N-(2-aminoethyl)-3-aminopropyl trimethoxysilane functionalized carbon nanotubes. Iran Polym J 29, 875–889 (2020). https://doi.org/10.1007/s13726-020-00848-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13726-020-00848-y

Keywords

Navigation