Skip to main content
Log in

Sensorsless Electrostatic Suspension System Based on Observer Controller

  • Regular Paper
  • Published:
International Journal of Precision Engineering and Manufacturing Aims and scope Submit manuscript

Abstract

This paper introduces a new type of active electrostatic suspension system without using position sensors. The concept is to design a feedback controller without using position signals of the object instead using the voltage signals. In the working process of the electrostatic suspension system, the capacitance formed between the electrode and the suspended object is treated as a capacitor of two parallel plates, and if the gap length between them is changed the capacitance is then changed. This causes to change the voltage across the capacitance formed between the electrode and suspended object. This voltage is measured, and it then is used to estimate all variables of the system that are the displacement, velocity of the suspended object, and voltage across the capacitance formed. These estimated values are employed in the feedback schema instead of actual states values. The design of the controller follows the classical observer state-space approach. First, a state feedback controller is constructed with the assumption that all the state variables of the suspension system that are displacement, velocity of the suspended object, and voltage across the capacitance formed by the electrodes and the suspended object, are available for feedback. Second, a full observer is designed for estimating all the states from the measured voltage across the capacitance. Finally, the estimated signals produced by the full observer are used in the feedback controller instead of the actual states, and the self-sensing electrostatic suspension without using position sensors is achieved. The experimental and simulation results show that the suspended object successfully levitated at reference gap without using position sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Li, S. E., Park, J. W., Lim, J. W., & Ahn, C. (2015). Design and control of a passive magnetic levitation carrier system. International Journal of Precision Engineering and Manufacturing, 16(4), 693–700.

    Article  Google Scholar 

  2. Kang, S., Kim, J., Pyo, J. B., Cho, J. H., & Kim, T. S. (2018). Design of magnetic force field for trajectory control of levitated diamagnetic graphite. International Journal of Precision Engineering and Manufacturing-Green Technology, 5(2), 341–347.

    Article  Google Scholar 

  3. Zhang, W., Zhu, P., Cheng, L., & Zhu, H. (2019). Improved centripetal force type-magnetic bearing with superior stifness and anti-interference characteristics for flywheel battery system. International Journal of Precision Engineering and Manufacturing-Green Technology. https://doi.org/10.1007/s40684-019-00172-8.

    Article  Google Scholar 

  4. Zhou, R., Yan, S., Zhou, Y., Cheng, X., & Chien, C. J. T. (2015). Effects of temperature on control performance of magnetically levitated planar actuators. International Journal of Precision Engineering and Manufacturing, 16(1), 43–51.

    Article  Google Scholar 

  5. Jin, J., Yih, T. C., Higuchi, T., & Jeon, J. U. (1998). Direct electrostatic levitation and propulsion of silicon wafer. IEEE Trans. Industry Applications, 34, 975–984.

    Article  Google Scholar 

  6. Jeon, J. U., Jin, J., & Higuchi, T. (1997). Electrostatic suspension of 8-inch silicon wafer. Proceedings of the Institute of Electrostatics Japan, 21, 62–68.

    Google Scholar 

  7. Jin, J., Higuchi, T., & Kanemoto, M. (1995). Electrostatic levitator for hard disk media. IEEE Transactions on Industrial Electronics, 42, 467–473.

    Article  Google Scholar 

  8. van West, E., Yamamoto, A., &Higuchi, T. (2008). Transportation of hard disk media using electrostatic levitation and tilt control. In Proceedings of the 2008 IEEE international conference on robotics and automation (ICRA 2008), Pasadena, USA (pp. 755–760).

  9. Le, T. T., & Jeon, J. U. (2010). Time delay effects on performance and stability of a low cost electrostatic suspension system. International Journal of Precision Engineering and Manufacturing, 11(4), 549–557.

    Article  Google Scholar 

  10. Jeon, J. U., & Higuchi, T. (1998). Electrostatic suspension of dielectrics. IEEE Transactions on Industrial Electronics, 45, 938–946.

    Article  Google Scholar 

  11. Knoebel, H. W. (1964). The electric vacuum gyro. Control Engineering, 11, 70–73.

    Google Scholar 

  12. Kumar, S., Cho, D., & Carr, W. N. (1992). Experimental study of electric suspension for microbearings. Journal of Microelectromechanical Systems, 1, 23–30.

    Article  Google Scholar 

  13. Clancy, E. F., Lierke, E. G., Grossbach, R., & Heide, W. M. (1980). Electrostatic and acoustic instrumentation for material science processing in space. Acta Astronautica, 7, 877–891.

    Article  Google Scholar 

  14. Elbuken, C., Khamesee, M. B., &Yavuz, M. (2009). Magnetic levitation as a micromanipulation technique for MEMS. In Proceedings of international conference on mechatronics and automation (pp. 955–959) China.

  15. Abbott, J. J., Nagy, Z., Beyeler, F., & Nelson, B. J. (2007). Robotics in the small: Tutorial part I—Microrobotics. IEEE Robotics and Automation Magazine, 14, 92–103.

    Article  Google Scholar 

  16. Han, F., Sun, B., Li, L., & Wu, Q. (2015). Performance of a sensitive micromachined accelerometer with an electrostatically suspended proof mass. IEEE Sensors Journal, 15, 209–217.

    Article  Google Scholar 

  17. Sari, I., & Kraft, M. (2015). A MEMS linear accelerator for levitated micro objects. Sensors and Actuators A: Physical, 222, 15–23.

    Article  Google Scholar 

  18. Ambur, R., & Rinderknecht, S. (2018). Unbalance detection in rotor systems with active bearings using self-sensing piezoelectric actuators. Mechanical Systems and Signal Processing, 102, 72–86.

    Article  Google Scholar 

  19. Wang, J., & Binder, A. (2017). Position estimation for self-sensing magnetic bearings based on the current slope due to the switching amplifier. EPE Journal. https://doi.org/10.1080/09398368.2016.1273445.

    Article  Google Scholar 

  20. Qu, K., Xu, G., Cha, S. W., Zhang, Y., Feng, W., Cao, J., et al. (2018). An innovative rotor position detection at stand-still and low speed with carrier phase-shifted PWM method. International Journal of Precision Engineering and Manufacturing, 19(9), 1281–1289.

    Article  Google Scholar 

  21. Bonfitto, A., Gabai, R., Tonoli, A., Miguel Castellanos, L., & Amati, N. (2019). Resonant inductive displacement sensor for active magnetic bearings. Sensors and Actuators A: Physics, 287, 84–92.

    Article  Google Scholar 

  22. del Corro, P. G., Imboden, M., Pérez, D. J., Bishop, D. J., & Pastoriza, H. (2017). Single ended capacitive self-sensing system for comb drives driven XY nanopositioners. Sensors and Actuators A: Physics. https://doi.org/10.1016/j.sna.2017.11.021.

    Article  Google Scholar 

  23. Vischer, D., & Bleuler, H. (1993). Self-sensing active magnetic levitation. IEEE Transaction on Magnetic, 29, 1276–1281.

    Article  Google Scholar 

  24. Bleuler, H., Vischer, D., Schweiter, G., Traxler, A., & Zlatnik, D. (1994). New concepts for cost-effective magnetic bearing control. Automatica, 30, 871–876.

    Article  Google Scholar 

  25. Mizuno, T., & Bleuler, H. (1995). Self-sensing magnetic bearing control system design using the geometric approach. Control Engineering Practice, 3, 925–932.

    Article  Google Scholar 

  26. Mizuno, T., Araki, K., & Bleuler, H. (1996). Stability analysis of self-sensing magnetic bearing controllers. IEEE Transactions on Control Systems Technology, 40, 572–579.

    Article  Google Scholar 

  27. Lee, S. D., & Song, J. B. (2016). Sensorless collision detection based on friction model for a robot manipulator. International Journal of Precision Engineering and Manufacturing, 17(11), 11–17.

    Article  Google Scholar 

  28. Dinh, T. Q., Yoon, J. I., Marco, J., Jennings, P., Ahn, K. K., & Ha, C. (2017). Sensorless force feedback joystick control for teleoperation of construction equipment. International Journal of Precision Engineering and Manufacturing, 18(7), 955–969.

    Article  Google Scholar 

  29. Ogata, K. (2011). Modern control engineering. Upper Saddle River: Prentice Hall.

    MATH  Google Scholar 

  30. Dutton, K., Thompson, S., & Barraclough, B. (1997). The art of control engineering. Upper Saddle River: Prentice Hall.

    Google Scholar 

Download references

Acknowledgements

I would like to thank University of Ulsan, Korea and Ho Chi Minh City University of Food Industry for this research.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. T. Le.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Le, T.T., Jeon, J.U. Sensorsless Electrostatic Suspension System Based on Observer Controller. Int. J. Precis. Eng. Manuf. 21, 1615–1627 (2020). https://doi.org/10.1007/s12541-020-00351-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12541-020-00351-7

Keywords

Navigation