Skip to main content
Log in

A review on liquid metals as cathodes for molten salt/oxide electrolysis

  • Invited Review
  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Compared with solid metals, liquid metals are considered more promising cathodes for molten slat/oxide electrolysis due to their fascinating advantages, which include strong depolarization effect, strong alloying effect, excellent selective separation, and low operating temperature. In this review, we briefly introduce the properties of the liquid metal cathodes and their selection rules, and then summarize development in liquid metal cathodes for molten salt electrolysis, specifically the extraction of Ti and separation of actinides and rare-earth metals in halide melts. We also review recent attractive progress in the preparation of liquid Ti alloys via molten oxide electrolysis by using liquid metal cathodes. Problems related to high-quality alloy production and large-scale applications are cited, and several research directions to further improve the quality of alloys are also discussed to realize the industrial applications of liquid metal cathodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K.I. Popov, S.S. Djokić, and B.N. Grgur, Fundamental Aspects of Electrometallurgy, Springer, Boston, 2002.

    Google Scholar 

  2. D.J. Fray, Emerging molten salt technologies for metals production, JOM, 53(2001), No. 10, p. 27.

    Google Scholar 

  3. O. Lindstrom, Apparatus for the Electrolytic Production of Alkali, U.S. Patent, Appl. 3864236, 1975.

  4. V. De Nora, P.M. Spaziante, and A. Nidola, Molten Salt Electrolysis, U.S. Patent, Appl. 4187155, 1980.

  5. T. Ogasawara, Y. Natsume, and K. Fujita Process for the Electrolytic Production of Magnesium, U.S. Patent, Appl. 5089094, 1992.

  6. I.S. Hirschhorn, Commercial production of rare earth metals by fused salt electrolysis, JOM, 20(1968), No. 3, p. 19.

    CAS  Google Scholar 

  7. V. De Nora, J.F. Gauger, J.M. Fresnel, I.L. Adorian, and J.J.R. Duruz, Electrolytic Production of Aluminum, U.S. Patent, Appl. 4650552, 1987.

  8. L.H. Piette, P. Ludwig, and R.N. Adams, Electrolytic generation of radical ions in aqueous solution, J. Am. Chem. Soc., 83(1961), No. 18, p. 3909.

    CAS  Google Scholar 

  9. J.A. Widegren, E.M. Saurer, K.N. Marsh, and J.W. Magee, Electrolytic conductivity of four imidazolium-based room-temperature ionic liquids and the effect of a water impurity, J. Chem. Thermodyn., 37(2005), No. 6, p. 569.

    CAS  Google Scholar 

  10. Q.A. Xu, Z.Y. Ning, M.R. Shen, Y. Xin, B. Zhao, and J.S. Zhu, CNx films deposition by organic solution electrolysis, Surf. Coat. Technol., 122(1999), No. 2–3, p. 188.

    Google Scholar 

  11. G.J. Janz, Molten Salts Handbook, Elsevier, Netherlands, 2013.

    Google Scholar 

  12. D. Sadoway, Apparatus for Electrolysis of Molten Oxides, U.S. Patent, Appl. 11/496615, 2008.

  13. H. Kvande and W. Haupin, Cell voltage in aluminum electrolysis: A practical approach, JOM, 52(2000), No. 2, p. 31.

    CAS  Google Scholar 

  14. A. Allanore, Features and challenges of molten oxide electrolytes for metal extraction, J. Electrochem. Soc., 162(2015), No. 1, p. E13.

    CAS  Google Scholar 

  15. G.Z. Chen, D.J. Fray, and T.W. Farthing, Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride, Nature, 407(2000), No. 6802, p. 361.

    CAS  Google Scholar 

  16. E. Nishimura, M. Kuroki, N. Kikutake, and Y. Shindou, Method and Apparatus for Producing a High-Purity Titanium, U.S. Patent, Appl. 5336378, 1994.

  17. Z.N. Shi, J.L. Xu, Z.X. Qiu, Z.W. Wang, and B.L. Gao, Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis, JOM, 55(2003), No. 11, p. 63.

    CAS  Google Scholar 

  18. Q.Y. Wang, Y. Li, S.Q. Jiao, and H.M. Zhu, Producing metallic titanium through electro-refining of titanium nitride anode, Electrochem. Commun., 35(2013), p. 135.

    Google Scholar 

  19. P.A. Foster Jr., S.K. Das, and A.J. Becker, Method of Producing Aluminum Using Graphite Cathode Coated with Refractory HardMetal, U.S. Patent, Appl. 4308115, 1981.

  20. J. Li, X.J. Lü, Y.Q. Lai, Q.Y. Li, and Y.X. Liu, Research progress in TiB2 wettable cathode for aluminum reduction, JOM, 60(2008), No. 8, p. 32.

    CAS  Google Scholar 

  21. T. Koyama, M. Iizuka, Y. Shoji, R. Fujita, H. Tanaka, T. Kobayashi, and M. Tokiwai, An experimental study of molten salt electrorefining of uranium using solid iron cathode and liquid cadmium cathode for development of pyrometallurgical reprocessing, J. Nucl. Sci. Technol., 34(1997), No. 4, p. 384.

    CAS  Google Scholar 

  22. V. Dosaj, C. Aksaranan, and D.R. Morris, Thermodynamic properties of the calcium + calcium chloride system measured by an electrochemical technique, J. Chem. Soc. Faraday Trans. 1, 71(1975), p. 1083.

    CAS  Google Scholar 

  23. A.J. Bard, L.R. Faulkner, J. Leddy, and C.G. Zoski, Electrochemical Methods: Fundamentals and Applications, Wiley, New York, 1980.

    Google Scholar 

  24. T. Kato, T. Inoue, T. Iwai, and Y. Arai, Separation behaviors of actinides from rare-earths in molten salt electrorefining using saturated liquid cadmium cathode, J. Nucl. Mater., 357(2006), No. 1–3, p. 105.

    CAS  Google Scholar 

  25. Y. Sakamura, T. Hijikata, K. Kinoshita, T. Inoue, T.S. Storvick, C.L. Krueger, L.F. Grantham, S.P. Fusselman, D.L. Grimmett, and J.J. Roy, Separation of actinides from rare earth elements by electrorefining in LiCl-KCl eutectic salt, J. Nucl. Sci. Technol., 35(1998), No. 1, p. 49.

    CAS  Google Scholar 

  26. K. Kinoshita, T. Inoue, S.P. Fusselman, D.L. Grimmett, J.J. Roy, R.L. Gay, C.L. Krueger, C.R. Nabelek, and T.S. Storvick, Separation of uranium and transuranic elements from rare earth elements by means of multistage extraction in LiCl-KCl/Bi system, J. Nucl. Sci. Technol., 36(1999), No. 2, p. 189.

    CAS  Google Scholar 

  27. H.D. Jiao, J.X. Wang, L. Zhang, K. Zhang, and S.Q. Jiao, Electrochemically depositing titanium(III) ions at liquid tin in a NaCl-KCl melt, RSC Adv., 5(2015), p. 62235.

    CAS  Google Scholar 

  28. R.A. Sharma, Neodymium production processes, JOM, 39(1987), No. 2, p. 33.

    CAS  Google Scholar 

  29. W. Xiao and D.H. Wang, Rare metals preparation by electro-reduction of solid compounds in high-temperature molten salts, Rare Met., 35(2016), No. 8, p. 581.

    CAS  Google Scholar 

  30. Q.Q. Yang, Studies on electrodeposition of rare earth metals and their alloys in molten salts, Electrochemistry, 3(1997), No. 2, p. 117.

    CAS  Google Scholar 

  31. M. Matsumiya, M. Takano, R. Takagi, and R. Fujita Recovery of Ba2+ using liquid metallic cathodes in molten chlorides, J. Nucl. Sci. Technol., 35(1998), No. 11, p. 836.

    CAS  Google Scholar 

  32. M.K.G. Vermaak, Vanadium Recovery in the Electro-Aluminothermic Production of Ferrovanadium [Dissertation], University of Pretoria, Pretoria, 2000.

    Google Scholar 

  33. T. Koyama, M. Iizuka, N. Kondo, R. Fujita, and H. Tanaka, Electrodeposition of uranium in stirred liquid cadmium cathode, J. Nucl. Mater., 247(1997), p. 227.

    CAS  Google Scholar 

  34. S.H. Kim, S. Paek, T.J. Kim, D.Y. Park, and D.H. Ahn, Electrode reactions of Ce3+/Ce couple in LiCl-KCl solutions containing CeCl3 at solid W and liquid Cd electrodes, Electrochim. Acta, 85(2012), p. 332.

    CAS  Google Scholar 

  35. S.X. Li, S.D. Herrmann, K.M. Goff, M.F. Simpson, and R.W. Benedict, Actinide recovery experiments with bench-scale liquid cadmium cathode in real fission product-laden molten salt, Nucl. Technol., 165(2009), No. 2, p. 190.

    CAS  Google Scholar 

  36. T. Satoh, T. Iwai, and Y. Arai, Nitridation of U and Pu recovered in liquid Cd cathode by molten salt electrorefining of (U, Pu) N, [in] Proceedings of International Conference on Advanced Nuclear Fuel Cycle, Sustainable Options & Industrial Perspectives (Global 2009), Paris, 2009, p. 1278.

  37. Y. Nakazono, T. Iwai, and Y. Arai, Nitride formation behavior of actinides recovered into liquid Cd cathode by electrorefining, [in] Proceedings of the international conference on nuclear energy systems for future generation and global sustainability (Global 2005), Tsukuba, 2005.

  38. M. Iizuka, K. Uozumi, T. Inoue, T. Iwai, O. Shirai, and Y. Arai, Behavior of plutonium and americium at liquid cadmium cathode in molten LiCl-KCl electrolyte, J. Nucl. Mater., 299(2001), No. 1, p. 32.

    CAS  Google Scholar 

  39. O. Shirai, K. Uozumi, T. Iwai, and Y. Arai, Electrode reaction of the U3+/U couple at liquid Cd and Bi electrodes in LiCl-KCl eutectic melts, Anal. Sci. 17(2001), Suppl., p. 1959.

    Google Scholar 

  40. H. Hayashi, M. Akabori, and K. Minato, Cyclic voltammetry behavior of americium at a liquid cadmium electrode in LiCl-KCl eutectic melts, Nucl. Technol., 162(2008), No. 2, p. 129.

    CAS  Google Scholar 

  41. K. Uozumi, M. Iizuka, T. Kato, T. Inoue, O. Shirai, T. Iwai, and Y. Arai, Electrochemical behaviors of uranium and plutonium at simultaneous recoveries into liquid cadmium cathodes, J. Nucl. Mater., 325(2004), No. 1, p. 34.

    CAS  Google Scholar 

  42. M. Matsumiya, M. Takano, R. Takagi, and R. Fujita, Electrochemical behavior of Ba2+ at liquid metal cathodes in molten chlorides, Z. Naturforsch. A: Phys. Sci., 54(1999), No. 12, p. 739.

    Google Scholar 

  43. M. Matsumiya, R. Takagi, and R. Fujita, Recovery of Eu2+ and Sr2+ using liquid metallic cathodes in molten NaCl-KCl and KCl system, J. Nucl. Sci. Technol., 34(1997), No. 3, p. 310.

    CAS  Google Scholar 

  44. M. Matsumiya and R. Takagi, Electrochemical impedance spectroscopic study on Eu2+ and Sr2+ using liquid metal cathodes in molten chlorides, Z. Naturforsch. A: Phys. Sci., 55(2000), No. 8, p. 673.

    CAS  Google Scholar 

  45. M. Matsumiya, R. Takagi, and R. Fujita, Recovery of caesium using liquid metallic cathodes in molten fluoride system, J. Nucl. Sci. Technol., 35(1998), No. 2, p. 137.

    CAS  Google Scholar 

  46. J.J. Laidler, J.E. Battles, W.E. Miller, J.P. Ackerman, and E.I. Carls, Development of pyroprocessing technology, Prog. Nucl. Energy, 31(1997), No. 1–2, p. 131.

    CAS  Google Scholar 

  47. J.J. Roy, L.F. Grantham, D.L. Grimmett, S.P. Fusselman, C.L. Krueger, T.S. Storvick, T. Inoue, Y. Sakamura, and N. Takahashi, Thermodynamic properties of U, Np, Pu, and Am in molten LiCl-KCl eutectic and liquid cadmium, J. Electrochem. Soc., 143(1996), No. 8, p. 2487.

    CAS  Google Scholar 

  48. J.P. Ackerman and J.L. Settle, Partition of lanthanum and neodymium metals and chloride salts between molten cadmium and molten LiCl-KCl eutectic, J. Alloys Compd., 177(1991), No. 1, p. 129.

    CAS  Google Scholar 

  49. Y.S. Hwang, M.S. Jeong, and S.W. Park, Current status on the nuclear back-end fuel cycle R&D in Korea, Prog. Nucl. Energy, 49(2007), No. 6, p. 463.

    Google Scholar 

  50. Y. Castrillejo, M.R. Bermejo, P.D. Arocas, A.M. Martinez, and E. Barrado, The electrochemical behaviour of the Pr(III)/Pr redox system at Bi and Cd liquid electrodes in molten eutectic LiCl-KCl, J. Electroanal. Chem., 579(2005), No. 2, p. 343.

    CAS  Google Scholar 

  51. S. Vandarkuzhali, N. Gogoi, S. Ghosh, B. Prabhakara Reddy, and K. Nagarajan, Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl-KCl eutectic melt, Electrochim. Acta, 59(2012), p. 245.

    CAS  Google Scholar 

  52. D. Vaden, S.X. Li, B.R. Westphal, K.B. Davies, T.A. Johnson, and D.M. Pace, Engineering-scale liquid cadmium cathode experiments, Nucl. Technol., 162(2008), No. 2, p. 124.

    CAS  Google Scholar 

  53. H.L. Slatin, Electrolysis of Rare-Earth Elements and Yttrium, U.S. Patent, Appl. 2961387, 1960.

  54. D.W. Bareis, Method of Purifying Liquid Fuels of Nuclear Reactors, U.S. Patent, Appl. 2758023, 1956.

  55. Y.D. Yan, D.B. Ji, Y. Xue, M.L. Zhang, P. Wang, Y.H. Liu, T.Q. Yin, P. Li, W. Han, and J. Wang, Electrochemical synthesis quaternary Mg-Li-Al-Pr alloy with and without whisker on magnesium cathode in LiCl-KCl-PrCl3-AlCl3 melts, J. Electrochem. Soc., 164(2017), No. 7, p. D429.

    CAS  Google Scholar 

  56. J. Lucas, P. Lucas, T. Le Mercier, A. Rollat, and W.G. Davenport, Rare Earths: Science, Technology, Production and Use, Elsevier, Netherlands, 2014.

    Google Scholar 

  57. W. Han, W.L. Li, M. Li, Z.Y. Li, Y. Sun, X.G. Yang, and M.L. Zhang, Electrochemical co-reduction of Y(III) and Zn(II) and extraction of yttrium on Zn electrode in LiCl-KCl eutectic melts, J. Solid State Electrochem., 22(2018), No. 8, p. 2435.

    CAS  Google Scholar 

  58. P. Wang, D.B. Ji, D.Q. Ji, J.N. Zheng, Y.D. Yan, M.L. Zhang, W. Han, and H.J. Wu, Electrochemical and thermodynamic properties of ytterbium and formation of Zn-Yb alloy on liquid Zn electrode, J. Nucl. Mater., 517(2019), p. 157.

    CAS  Google Scholar 

  59. M. Gibilaro, S. Bolmont, L. Massot, L. Latapie, and P. Chamelot, On the use of liquid metals as cathode in molten fluorides, J. Electroanal. Chem., 726(2014), p. 84.

    CAS  Google Scholar 

  60. A. Honders, A.J. Horstik, and G.J.M. Van Eyden, Process for the Electrolytic Production of Metals from a Fused Salt Melt with a Liquid Cathode, U.S. Patent, Appl. 4853094, 1989.

  61. Z. Chen, M.L. Zhang, W. Han, X.L. Wang, and D.X. Tang, Electrodeposition of Zr and electrochemical formation of Mg-Zr alloys from the eutectic LiCl-KCl, J. Alloys Compd., 459(2008), No. 1–2, p. 209.

    CAS  Google Scholar 

  62. Y. Xu, H.D. Jiao, M.Y. Wang, and S.Q. Jiao, Direct preparation of V-Al alloy by molten salt electrolysis of soluble NaVO3 on a liquid Al cathode, J. Alloys Compd., 779(2019), p. 22.

    CAS  Google Scholar 

  63. A. Robin and J. De Lepinay, Determination of the apparent standard potential of the Ti/Ti(III) system in the LiF-NaF-KF eutectic using voltammetry, chronopotentiometry and open-circuit potentiometry, Electrochim. Acta, 36(1991), No. 5–6, p. 1009.

    CAS  Google Scholar 

  64. A. Robin, Behavior of titanium electrocoatings on nickel in fluoride melts, Mater. Lett., 34(1998), No. 3–6, p. 196.

    CAS  Google Scholar 

  65. A. Robin, Influence of temperature on the reduction mechanism of Ti(III) ions on iron in the LiF-NaF-KF eutectic melt and on the electrochemical behavior of the resultant titanium coatings, Mater. Chem. Phys., 89(2005), No. 2–3, p. 438.

    CAS  Google Scholar 

  66. S.K. Maity, M. Chandra Shekhar, and V. Ananth, An exploratory study of electrodeposition of titanium using titanium dioxide carbon composite anode and molten aluminium cathode, Miner. Process. Extr. Metall., 118(2009), No. 1, p. 10.

    CAS  Google Scholar 

  67. Y. Kado, A. Kishimoto, and T. Uda, Electrolysis of TiO2 or TiCl2 using Bi liquid cathode in molten CaCl2, J. Electrochem. Soc., 160(2013), No. 10, p. E139.

    CAS  Google Scholar 

  68. Y. Kado, A. Kishimoto, and T. Uda, New smelting process for titanium: Magnesiothermic reduction of TiCl4 into liquid Bi and subsequent refining by vacuum distillation, Metall. Mater. Trans. B, 46(2015), No. 1, p. 57.

    CAS  Google Scholar 

  69. A. Kishimoto, Y. Kado, and T. Uda, Electrorefining of titanium from Bi-Ti alloys in molten chlorides for a new smelting process of titanium, J. Appl. Electrochem., 46(2016), No. 9, p. 987.

    CAS  Google Scholar 

  70. S.Q. Jiao and H.M. Zhu, Novel metallurgical process for titanium production, J. Mater. Res., 21(2006), No. 9, p. 2172.

    CAS  Google Scholar 

  71. S.Q. Jiao, X.H. Ning, K. Huang, and H.M. Zhu, Electrochemical dissolution behavior of conductive TiCxO1−x solid solutions, Pure Appl. Chem., 82(2010), No. 8, p. 1691.

    CAS  Google Scholar 

  72. H.D. Jiao, J.X. Wang, D.H. Tian, and S.Q. Jiao, Electrochemical behaviour of K2TiF6 at liquid metal cathodes in the LiF-NaF-KF eutectic melt, Electrochemistry, 87(2019), No. 3, p. 142.

    CAS  Google Scholar 

  73. H.D. Jiao, S.Q. Jiao, W.L. Song, H.S. Chen, M.Y. Wang, J.G. Tu, and D.N. Fang, Depolarization behavior of Ti deposition at liquid metal cathodes in a NaCl-KCl-KF melt, J. Electrochem. Soc., 166(2019), No. 13, p. E401.

    CAS  Google Scholar 

  74. R.H. Aiken, Process of Making Iron From the Ore, U.S. Patent, 816142, 1906.

  75. Y. Hashimoto, K. Uriya, and R. Kono, Electrowinning of titanium from its oxides, Part II. Influences of fluoride salt baths on fused-salt electrodeposition of titanium metal from titanium dioxide, Denki Kagaku, 39(1971), No. 12, p. 938.

    CAS  Google Scholar 

  76. D.R. Sadoway, The electrochemical processing of refractory metals, JOM, 43(1991), No. 7, p. 15.

    CAS  Google Scholar 

  77. J.B. Todd, Energy reduction in Hall-Héroult cells with conventional and special electrodes, JOM, 33(1981), No. 9, p. 42.

    CAS  Google Scholar 

  78. F. Cardarelli, Method for Electrowinning of Titanium Metal or Alloy from Titanium Oxide Containing Compound in the Liquid State, U.S. Patent, Appl. 7504017, 2009.

  79. T. Takenaka, H. Matsuo, M. Sugawara, and M. Kawakami, High temperature electrolysis of Ti and its alloys with a DC-ESR unit, Key Eng. Mater., 436(2010), p. 85.

    CAS  Google Scholar 

  80. Y. Yamanaka, T. Morishige, and T. Takenaka, Electrochemical behavior of Ti in molten fluoride-oxide system, ECS Trans., 64(2014), No. 4, p. 275.

    CAS  Google Scholar 

  81. A. Allanore, L. Yin, and D.R. Sadoway, A new anode material for oxygen evolution in molten oxide electrolysis, Nature, 497(2013), No. 7449, p. 353.

    CAS  Google Scholar 

  82. D.H. Wang, A.J. Gmitter, and D.R. Sadoway, Production of oxygen gas and liquid metal by electrochemical decomposition of molten iron oxide, J. Electrochem. Soc., 158(2011), No. 6, p. E51.

    CAS  Google Scholar 

  83. H. Kim, J. Paramore, A. Allanore, and D.R. Sadoway, Electrolysis of molten iron oxide with an iridium anode: The role of electrolyte basicity, J. Electrochem. Soc., 158(2011), No. 10, p. E101.

    CAS  Google Scholar 

  84. K. Zhang, H.D. Jiao, Z.G. Zhou, S.Q. Jiao, and H.M. Zhu, Electrochemical behavior of Fe(III) ion in CaO-MgO-SiO2-Al2O3-NaF-Fe2O3 melts at 1673 K, J. Electrochem. Soc., 163(2016), No. 13, p. D710.

    CAS  Google Scholar 

  85. Z.G. Zhou, H.D. Jiao, J.G. Tu, J. Zhu, and S.Q. Jiao, Direct production of Fe and Fe-Ni alloy via molten oxides electrolysis, J. Electrochem. Soc., 164(2017), No. 6, p. E113.

    CAS  Google Scholar 

  86. Z.G. Zhou, S. Wang, H.D. Jiao, and S.Q. Jiao, The feasibility of electrolytic preparation of Fe-Ni-Cr alloy in molten oxides system, J. Electrochem. Soc., 164(2017), No. 14, p. D964.

    CAS  Google Scholar 

  87. A.H.C. Sirk, D.R. Sadoway, and L. Sibille, Direct electrolysis of molten lunar regolith for the production of oxygen and metals on the moon, ECS Trans., 28(2010), No. 6, p. 367.

    CAS  Google Scholar 

  88. H.D. Jiao, D.H. Tian, S. Wang, J. Zhu, and S.Q. Jiao, Direct preparation of titanium alloys from Ti-bearing blast furnace slag, J. Electrochem. Soc., 164(2017), No. 7, p. D511.

    CAS  Google Scholar 

  89. G. Lütjering and J.C. Williams, Titanium, 2nd ed., Springer-Verlag Berlin Heidelberg, New York, 2007.

    Google Scholar 

  90. L. Zhang, L.N. Zhang, M.Y. Wang, M.Y. Wang, G.Q. Li, and Z.T. Sui, Dynamic oxidation of the Ti-bearing blast furnace slag, ISIJ Int., 46(2006), No. 3, p. 458.

    CAS  Google Scholar 

  91. K. Hu, X.W. Lv, W.Z. Yu, Z.M. Yan, W. Li, and S.P. Li, Electric conductivity of TiO2-Ti2O3-FeO-CaO-SiO2-MgO-Al2O3 for high-titania slag smelting process, Metall. Mater. Trans. B, 50(2019), No. 6, p. 2982.

    CAS  Google Scholar 

  92. H.D. Jiao, D.H. Tian, J.G. Tu, and S.Q. Jiao, Production of Ti-Fe alloys via molten oxide electrolysis at a liquid iron cathode, RSC Adv., 8(2018), No. 31, p. 17575.

    CAS  Google Scholar 

  93. Z.H. Pu, H.D. Jiao, Z.S. Mi, M.Y. Wang, and S.Q. Jiao, Selective extraction of titanium from Ti-bearing slag via the enhanced depolarization effect of liquid copper cathode, J. Energy Chem., 42(2020), p. 43.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51725401 and 51904030) and the Fundamental Research Funds for the Central Universities (No. FRF-TP-18-003C2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-qiang Jiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiao, Sq., Jiao, Hd., Song, Wl. et al. A review on liquid metals as cathodes for molten salt/oxide electrolysis. Int J Miner Metall Mater 27, 1588–1598 (2020). https://doi.org/10.1007/s12613-020-1971-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1971-x

Keywords

Navigation