Skip to main content
Log in

Giant magneto impedance effect of Co-rich amorphous fibers under magnetic interaction

International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

The quasi-metallic fibers were selected from 1 to 40 pieces and connected in parallel in this study. The giant magneto impedance (GMI) effect of Co-based melt extract fibers in the bundle mode was investigated, and the distribution of the surface circumferential magnetic field on the fibers was also analyzed. Such distribution was induced by the driving current, which gave rise to the circular magnetization process and the GMI effect. The improved GMI effect with much higher field sensitivity was observed in these fiber bundles. Results show that the field sensitivities of the four-fiber and six-fiber bundles reach 19.5 V·m·kA−1 (at 1 MHz) and 30.8 V·m·kA−1 (at 5 MHz). The circumferential magnetic field distributed throughout the fiber’s circumferential surface is rearranged and becomes uneven due to the magnetic interaction among fibers. There are both strengthened and weakened magnetic field parts around these fibers’ surfaces. The strengthened magnetic field improves the circumferential domain magnetization of the surface, resulting in larger GMI effects. However, the weakened parts inhibit the circumferential magnetization process and, therefore, the GMI effect. This also induces greater magnetization damp because of the increased domain interactions under the strong skin effect. The co-effect between the magnetic domains and the circumferential magnetization induces the optimization of the GMI effect in the four-fiber bundles. The observed GMI effect proves that fibers in bundle form can modify the sensitivity of the GMI effect. Moreover, different fiber bundles could be tuned according to the working conditions in order to manipulate the GMI response.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. E.P. Harrison, G.L. Turney, and H. Rowe, Electrical properties of wires of high permeability, Nature, 135(1935), No. 3423, p. 961.

    Article  Google Scholar 

  2. K. Mohri, T. Kohzawa, K. Kawashima, H. Yoshida, and L.V. Panina, Magneto-inductive effect (MI effect) in amorphous wires, IEEE Trans. Magn., 28(1992), No. 5, p. 3150.

    Article  CAS  Google Scholar 

  3. M.H. Phan and H.X. Peng, Giant magnetoimpedance materials: Fundamentals and applications, Prog. Mater. Sci., 53(2008), No. 2, p. 323.

    Article  Google Scholar 

  4. L.G.C. Melo, D. Menard, A. Yelon, L. Ding, S. Saez, and C. Dolabdjian, Optimization of the magnetic noise and sensitivity of giant magnetoimpedance sensors, J. Appl. Phys, 103(2008), No. 3, art. No. 033903.

  5. L. Chen, C.C. Bao, H. Yang, D. Li, C. Lei, T. Wang, H.Y. Hu, M. He, Y. Zhou, and D.X. Cui, A prototype of giant magnetoimpedance-based biosensing system for targeted detection of gastric cancer cells, Biosens. Bioelectron., 26(2011), No. 7, p. 3246.

    Article  CAS  Google Scholar 

  6. Y. Wanderoild, A. Asfour, P. Lefranc, P.-O. Jeannin, and J.P. Yonnet, Giant magneto-impedance sensor for gate driver-insulated signal transmission functions, IEEE Trans. Power Electron., 32(2017), No. 4, p. 2493.

    Article  Google Scholar 

  7. V. Zhukova, M. Ipatov, A. Talaat, J.M. Blanco, M. Churyukanova, and A. Zhukov, Effect of stress annealing on magnetic properties and GMI effect of Co- and Fe-rich microwires, J. Alloys Compd., 707(2017), p. 189.

    Article  CAS  Google Scholar 

  8. A. Zhukov, M. Ipatov, A. Talaat, J.M. Blanco, M. Churyukanova, A. Granovsky, and V. Zhukova, Engineering of giant magnetoimpedance effect of amorphous and nanocrystalline microwires, J. Supercond Novel Magn., 30(2017), No. 5, p. 1359.

    Article  CAS  Google Scholar 

  9. J. Nabias, A. Asfour, and J.P. Yonnet, The impact of bending stress on the performance of giant magneto-impedance (GMI) magnetic sensors, Sensors, 17(2017), No. 3, p. 640.

    Article  Google Scholar 

  10. D. Seddaoui, D. Menard, and A. Yelon, Measurement and model of the tensile stress dependence of the second harmonic of nonlinear GMI in amorphous wires, IEEE Trans. Magn., 43(2007), No. 6, p. 2986.

    Article  Google Scholar 

  11. D. Estévez, A. He, C.T. Chang, Q.K. Man, X.M. Wang, and R.W. Li, Magnetoinductance and magnetoimpedance response of Co-based multi-wire arrays, J. Magn. Magn. Mater., 393(2015), p. 278.

    Article  Google Scholar 

  12. T.K. Das, A. Mitra, S.K. Mandal, R.K. Roy, P. Banerji, and A.K. Panda, Parametric controls on giant magnetoimpedance (GMI) behaviour of CoFeSiBCr amorphous wires for prospective sensor applications, Sens. Actuators A, 220(2014), p. 382.

    Article  CAS  Google Scholar 

  13. L.V. Panina, K. Mohri, and D.P. Makhnovskiy, Mechanism of asymmetrical magnetoimpedance in amorphous wires, J. Appl. Phys., 85(1999), p. 5444.

    Article  CAS  Google Scholar 

  14. S.H. Song, K.S. Kim, S.C. Yu, C.G. Kim, and M. Vazquez, Asymmetric GMI characteristics in current-biased amorphous (Co0.94Fe0.06)72.5Si12.5B15 wiee, J. Magn. Magn. Mater., 215–216(2000), p. 532.

    Article  Google Scholar 

  15. S.S. Yoon, P. Kollu, D.Y. Kim, G.W. Kim, Y. Cha, and C. Kim, Magnetic sensor system using asymmetric giant magnetoimpedance head, IEEE Trans. Magn., 45(2009), No. 6, p. 2727.

    Article  CAS  Google Scholar 

  16. C. García, V. Zhukova A. Zhukov, N. Usov, M. Ipatov, J. Gonzalez, and J.M. Blanco, Effect of interaction on giant magnetoimpedance effect in a system of few thin wires, Sens. Lett., 5(2007), No. 1, p. 10.

    Article  Google Scholar 

  17. M.H. Phan, H.X. Peng, S.C. Yu, and M.R. Wisnom, Large enhancement of GMI effect in polymer composites containing Co-based ferromagnetic microwires, J. Magn. Magn. Mater., 316(2007), No. 2, p. e253.

    Article  CAS  Google Scholar 

  18. H. Chiriac, D.D. Herea, and S. Corodeanu, Microwire array for giant magneto-impedance detection of magnetic particles for biosensor prototype, J. Magn. Magn. Mater., 311(2007), No. 1, p. 425.

    Article  CAS  Google Scholar 

  19. A. Zhukov, M. Ipatov, M. Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova, Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials, J. Alloys Compd., 727(2017), p. 887.

    Article  CAS  Google Scholar 

  20. A. Zhukov, M. Ipatov, P. Corte-León, L.G. Legarreta, M. Churyukanova, J.M. Blanco, J. Gonzalez, S. Taskaev, B. Hernando, and V. Zhukova, Giant magnetoimpedance in rapidly quenched materials, J. Alloys Compd., 814(2020), art. No. 152225.

  21. G.F. Taylor, A method of drawing metallic filaments and a discussion of their properties and uses, Phys. Rev., 23(1924), No. 5, p. 655.

    Article  Google Scholar 

  22. C.H. Chen, Y.C. Wang, S.K. Wu, and N.H. Lu, Precipitation hardening by nanoscale Ti2Ni phase in high Ti-rich Ti52.6Ni46.8Si0.6 melt-spun ribbon, J. Alloys Compd., 810(2019), art. No. 151904.

  23. B. Han, T. Zhang, K. Zhang, B. Yao, X.L. Yue, D.Y. Huang, H. Ren, and X.Y. Tang, Giant magnetoimpedance current sensor with array-structure double probes, IEEE Trans. Magn., 44(2008), No. 5, p. 605.

    Article  Google Scholar 

  24. J. Fan, J. Wu, N. Ning, H. Chiriac, and X.P. Li, Magnetic dynamic interaction in amorphous microwire array, IEEE Trans Magn., 46(2010), No. 6, p. 2431.

    Article  CAS  Google Scholar 

  25. P. Corte-León, V. Zhukova, M. Ipatov, J.M. Blanco, J. Gonzalez, and A. Zhukov, Engineering of magnetic properties of Co-rich microwires by joule heating, Intermetallics, 105(2019), p. 92.

    Article  Google Scholar 

  26. A. Chizhik, A. Zhukov, J.M. Blanco, R. Szymczak, and J. Gonzalez, Interaction between Fe-rich ferromagnetic glass-coated microwires, J. Magn. Magn. Mater., 249(2002), No. 1–2, p. 99.

    Article  CAS  Google Scholar 

  27. P. Gawroński, V. Zhukova, J.M. Blanco, and K. Kułakowski, Dynamics of interacting wires, J. Magn. Magn. Mater., 249(2002), No. 1–2, p. 9.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to express their gratitude to Professors Yelon and Menard from the University of Montreal, Canada, for their support and assistance in the impedance experiment. This work was financially supported by the National Natural Science Foundation of China (Nos. 51861031 and 51604159) and the Natural Science Foundation of Ningxia, China (No. 2018AAC03056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-ling Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Sl., Chen, Wy., Cui, N. et al. Giant magneto impedance effect of Co-rich amorphous fibers under magnetic interaction. Int J Miner Metall Mater 27, 1415–1420 (2020). https://doi.org/10.1007/s12613-020-1968-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-020-1968-5

Keywords

Navigation