Skip to main content
Log in

Geostatistics under preferential sampling in the presence of local repulsion effects

  • Published:
Environmental and Ecological Statistics Aims and scope Submit manuscript

Abstract

This paper presents an extension of the Geostatistical model under preferential sampling in order to accommodate possible local repulsion effects. This local repulsion can be caused by the researcher in charge of collecting data who, after observing the stochastic process of interest in a specific location, avoids collecting new samples near this place. Proceeding in this way, the resulting sampling design would in practice include a repulsion window centered on each sampling location, even though the researcher was planning the sample preferentially. This perturbation in the Geostatistical model under preferential sampling can be modeled through a discrete nonhomogeneous stochastic process over a partition composed of M subregions of the study area, where only one sample lies in each subregion. Simulations and an application to real data are performed under the Bayesian approach and the effects of this perturbation on estimation and prediction are then discussed. The results obtained corroborate the idea that the proposed methodology corrects the distortions caused by this perturbation, thus mitigating the effects on inference and spatial prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Banerjee S, Carlin B, Gelfand A (2004) Hierarchical modeling and analysis for spatial statistics. Chapman & Hall/CRC, New York

    Google Scholar 

  • Benes V, Bodlák K, Møller J, Waagepetersen RP (2003) Application of log gaussian cox processes in disease mapping. In: The ISI International Conference on Environmental Statistics and Health, no. 141, 95. Univ Santiago de Compostela

  • Cressie N (1993) Statistics for spatial data. Wiley, New York

    Book  Google Scholar 

  • Diggle PJ, Lophaven S (2006) Bayesian geostatistical design. Scand J Stat 33:53–64

    Article  Google Scholar 

  • Diggle P, Ribeiro P Jr (2007) Model based geostatistics. Springer, New York

    Book  Google Scholar 

  • Diggle PJ, Menezes R, Su T-L (2010) Geostatistical inference under preferential sampling. J R Stat Soc 59:191–232

    Article  Google Scholar 

  • Diggle PJ, Tawn J, Moyeed R (1998) Model-based geostatistics. J R Stat Soc 47:299–350

    Article  Google Scholar 

  • Dinsdale D, Salibian-Barrera M (2018) Methods for preferential sampling in geostatistics. J R Stat Soc. https://doi.org/10.1111/rssc.12286

    Article  Google Scholar 

  • Fernández JA, Real C, Couto JA, Aboal JR, Carballeira A (2005) The effect of sampling design on extensive bryomonitoring surveys of air pollution. Sci Total Environ 337(1–3):11–21

    Article  Google Scholar 

  • Ferreira GS, Gamerman D (2015) Optimal design in geostatistics under preferential sampling. Bayesian Anal 10:711–735

    Article  CAS  Google Scholar 

  • Fuentes M (2002) Spectral methods for nonstationary spatial processes. Biometrika 89:197–210

    Article  Google Scholar 

  • Fuentes M, Smith RL (2001) A new class of nonstationary spatial models. In: Technical report, North Carolina State University, Raleigh

  • Gelfand AE, Sahu SK, Holland DM (2012) On the effect of preferential sampling in spatial prediction. Environmetrics 23:565–578

    Article  CAS  Google Scholar 

  • Giorgi E, Sesay SS, Terlouw DJ, Diggle PJ (2015) Combining data from multiple spatially referenced prevalence surveys using generalized linear geostatistical models. J R Stat Soc 178:445–464

    Article  Google Scholar 

  • Haas TC (1995) Local prediction of a spatio-temporal process with an application to wet sulfate deposition. J Am Stat Assoc 90:1189–1199

    Article  Google Scholar 

  • Heikkinen J, Arjas E (1998) Non-parametric bayesian estimation of a spatial poisson intensity. Scand J Stat 25:435–450

    Article  Google Scholar 

  • Heikkinen J, Arjas E (1999) Modeling a poisson forest in variable elevations: a nonparametric bayesian approach. Biometrics 55:738–745

    Article  CAS  Google Scholar 

  • Higdon D, Swall J, Kern J (1999) Non-stationary spatial modeling. In: Bernardo JM, Berger JO, Dawid AP, Smith AFM (eds) Bayesian statistics, vol 6. Oxford University Press, Oxford, pp 761–768

    Google Scholar 

  • Lee A, Szpiro A, Kim S, Sheppard L (2015) Impact of preferential sampling on exposure prediction and health effect inference in the context of air pollution epidemiology. Environmetrics 26:255–267

    Article  CAS  Google Scholar 

  • Møller J, Syversveen AR, Waagepetersen RP (1998) Log Gaussian cox processes. Scand J Stat 25:451–482

    Article  Google Scholar 

  • Møller J, Waagepetersen RP (2007) Modern statistics for spatial point processes. Scand J Stat 34:643–684

    Google Scholar 

  • Oliveira ICL (2015) Amostragem preferencial em processos espaciais discretos: Casos bernoulli e poisson. Master dissertation—Department of Statistical Methods—Federal University of Rio de Janeiro

  • Pan Y, Ren X, Gao B, Liu Y, Gao Y, Hao X, Chen Z (2015) Global mean estimation using a self-organizing dual-zoning method for preferential sampling. Environ Monitor Assess 187:1–10

    Article  CAS  Google Scholar 

  • Pati D, Reich BJ, Dunson DB (2011) Bayesian geostatistical modelling with informative sampling locations. Biometrika 98:35–48

    Article  CAS  Google Scholar 

  • Ribeiro PJ Jr, Diggle PJ et al (2001) Geor: a package for geostatistical analysis. R News 1:14–18

    Google Scholar 

  • Rue H, Martino S, Chopin N (2009) Approximate bayesian inference for latent gaussian models by using integrated nested laplace approximations. J R Stat Soc 71:319–392

    Article  Google Scholar 

  • Sampson PD, Guttorp P (1992) Nonparametric estimation of nonstationary spatial covariance structure. J Am Stat Assoc 87:108–119

    Article  Google Scholar 

  • Schmidt AM, O’Hagan A (2003) Bayesian inference for non-stationary spatial covariance structure via spatial deformations. J R Stat Soc 65:743–758

    Article  Google Scholar 

  • Shaddick G, Zidek JV (2014) A case study in preferential sampling: long term monitoring of air pollution in the UK. Spatial Stat 9:51–65

    Article  Google Scholar 

  • Simpson D, Illian JB, Lindgren F, Sørbye SH, Rue H (2016) Going off grid: computationally effcient inference for log-gaussian cox processes. Biometrika 103:49–70

    Article  Google Scholar 

  • Waagepetersen R (2004) Convergence of posteriors for discretized log gaussian cox processes. Stat Prob Lett 66:229–235

    Article  Google Scholar 

  • Zidek JV, Shaddick G, Taylor CG (2014) Reducing estimation bias in adaptively changing monitoring networks with preferential site selection. Ann Appl Stat 8:1640–1670

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gustavo da Silva Ferreira.

Additional information

Handling Editor: Bryan F. J. Manly

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, G.d.S. Geostatistics under preferential sampling in the presence of local repulsion effects. Environ Ecol Stat 27, 549–570 (2020). https://doi.org/10.1007/s10651-020-00458-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10651-020-00458-0

Keywords

Mathematics Subject Classification

Navigation