Skip to main content

Advertisement

Log in

Pre-existing Cell States Control Heterogeneity of Both EGFR and CXCR4 Signaling

  • Original Article
  • Published:
Cellular and Molecular Bioengineering Aims and scope Submit manuscript

Abstract

Introduction

CXCR4 and epidermal growth factor receptor (EGFR) represent two major families of receptors, G-protein coupled receptors and receptor tyrosine kinases, with central functions in cancer. While utilizing different upstream signaling molecules, both CXCR4 and EGFR activate kinases ERK and Akt, although single-cell activation of these kinases is markedly heterogeneous. One hypothesis regarding the origin of signaling heterogeneity proposes that intercellular variations arise from differences in pre-existing intracellular states set by extrinsic noise. While pre-existing cell states vary among cells, each pre-existing state defines deterministic signaling outputs to downstream effectors. Understanding causes of signaling heterogeneity will inform treatment of cancers with drugs targeting drivers of oncogenic signaling.

Methods

We built a single-cell computational model to predict Akt and ERK responses to CXCR4- and EGFR-mediated stimulation. We investigated signaling heterogeneity through these receptors and tested model predictions using quantitative, live-cell time-lapse imaging.

Results

We show that the pre-existing cell state predicts single-cell signaling through both CXCR4 and EGFR. Computational modeling reveals that the same set of pre-existing cell states explains signaling heterogeneity through both EGFR and CXCR4 at multiple doses of ligands and in two different breast cancer cell lines. The model also predicts how phosphatidylinositol-3-kinase (PI3K) targeted therapies potentiate ERK signaling in certain breast cancer cells and that low level, combined inhibition of MEK and PI3K ablates potentiated ERK signaling.

Conclusions

Our data demonstrate that a conserved motif exists for EGFR and CXCR4 signaling and suggest potential clinical utility of the computational model to optimize therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Altschuler, S. J., and L. F. Wu. Cellular heterogeneity: do differences make a difference? Cell 141:559–563, 2010.

    Google Scholar 

  2. Ballou, L. M., and R. Z. Lin. Rapamycin and mTOR kinase inhibitors. J. Chem. Biol. 1:27–36, 2008.

    Google Scholar 

  3. Blower, S. M., and H. Dowlatabadi. Sensitivity and uncertainty analysis of complex models of disease transmission: an HIV model, as an example. Int. Stat. Rev. 62:229–243, 1994.

    MATH  Google Scholar 

  4. Burke, P., K. Schooler, and H. S. Wiley. Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking. Mol. Biol. Cell 12:1897–1910, 2001.

    Google Scholar 

  5. Chang, S. L., S. P. Cavnar, S. Takayama, G. D. Luker, and J. J. Linderman. Cell, isoform, and environment factors shape gradients and modulate chemotaxis. PLoS ONE 10:e0123450, 2015.

    Google Scholar 

  6. Cheng, Y., et al. CXCL12/SDF-1α induces migration via SRC-mediated CXCR4-EGFR cross-talk in gastric cancer cells. Oncol. Lett. 14:2103–2110, 2017.

    Google Scholar 

  7. Choi, Y. H., M. D. Burdick, B. A. Strieter, B. Mehrad, and R. M. Strieter. CXCR4, but not CXCR7, discriminates metastatic behavior in non-small cell lung cancer cells. Mol. Cancer Res. 12:38–47, 2014.

    Google Scholar 

  8. Cintas, C., and J. Guillermet-Guibert. Heterogeneity of phosphatidylinositol-3-kinase (PI3K)/AKT/mammalian target of rapamycin activation in cancer: is PI3K isoform specificity important? Front. Oncol. 7:330, 2018.

    Google Scholar 

  9. Coggins, N. L., et al. CXCR7 controls competition for recruitment of β-arrestin 2 in cells expressing both CXCR4 and CXCR7. PLoS ONE 9:e98328, 2014.

    Google Scholar 

  10. Cojoc, M., C. Peitzsch, L. Polishchuk, G. Telegeev, and A. Dubrovska. Emerging targets in cancer management: role of the CXCL12/CXCR4 axis. Onco. Targets. Ther. 6:1347–1361, 2013.

    Google Scholar 

  11. Dawson, J. P., M. B. Berger, C. Lin, J. Schlessinger, M. A. Lemmon, and K. M. Ferguson. Epidermal growth factor receptor dimerization and activation require ligand-induced conformational changes in the dimer interface. Mol. Cell. Biol. 25:7734–7742, 2005.

    Google Scholar 

  12. DeNies, M. S., L. K. Rosselli-Murai, S. Schnell, and A. P. Liu. Clathrin heavy chain knockdown impacts CXCR4 signaling and post-translational modification. Front. Cell Dev. Biol. 7:1–11, 2019.

    Google Scholar 

  13. Domanska, U. M., et al. A review on CXCR4/CXCL12 axis in oncology: no place to hide. Eur. J. Cancer 49:219–230, 2013.

    Google Scholar 

  14. English, E. J., S. A. Mahn, and A. Marchese. Endocytosis is required for CXC chemokine receptor type 4 (CXCR4)-mediated Akt activation and antiapoptotic signaling. J. Biol. Chem. 293:11470–11480, 2018.

    Google Scholar 

  15. Faes, S., N. Demartines, and O. Dormond. Resistance to mTORC1 inhibitors in cancer therapy: from kinase mutations to intratumoral heterogeneity of kinase activity. Oxid. Med. Cell. Longev. 2017:1726078, 2017.

    Google Scholar 

  16. Gaudet, S., and K. Miller-Jensen. Redefining signaling pathways with an expanding single-cell toolbox. Trends Biotechnol. 34:458–469, 2016.

    Google Scholar 

  17. Gerdes, M. J., A. Sood, C. Sevinsky, A. D. Pris, M. I. Zavodszky, and F. Ginty. Emerging understanding of multiscale tumor heterogeneity. Front. Oncol. 4:1–12, 2014.

    Google Scholar 

  18. Harwood, F. C., et al. ETV7 is an essential component of a rapamycin-insensitive mTOR complex in cancer. Sci. Adv. 4:1–18, 2018.

    Google Scholar 

  19. Hendriks, B. S., L. K. Opresko, H. S. Wiley, and D. Lauffenburger. Coregulation of epidermal growth factor receptor/human epidermal growth factor receptor 2 (HER2) levels and locations: quantitative analysis of HER2 overexpression effects. Cancer Res. 63:1130–1137, 2003.

    Google Scholar 

  20. Hollestelle, A., F. Elstrodt, J. H. A. Nagel, and W. W. Kallemeijn. Phosphatidylinositol-3-OH Kinase or RAS pathway mutations in human breast cancer cell lines. Mol. Cancer Res. 5:195–201, 2007.

    Google Scholar 

  21. Iwamoto, K., Y. Shindo, and K. Takahashi. Modeling cellular noise underlying heterogeneous cell responses in the epidermal growth factor signaling pathway. PLoS Comput. Biol. 12:1–18, 2016.

    Google Scholar 

  22. Jeantet, M., et al. High intra-and inter-tumoral heterogeneity of RAS mutations in colorectal cancer. Int. J. Mol. Sci. 17:2015, 2016.

    Google Scholar 

  23. Kaschek, D., B. Hahn, D. Wrangborg, J. Karlsson, and M. Kvarnström. Heterogeneous kinetics of AKT signaling in individual cells are accounted for by variable protein concentration. Front. Physiol. 3:1–14, 2012.

    Google Scholar 

  24. Kasina, S., P. A. Scherle, C. L. Hall, and J. A. MacOska. ADAM-mediated amphiregulin shedding and EGFR transactivation. Cell Prolif. 42:799–812, 2009.

    Google Scholar 

  25. Kim, E., J. Kim, M. A. Smith, E. B. Haura, R. Alexander, and A. Anderson. Cell signaling heterogeneity is modulated by both cell-intrinsic and -extrinsic mechanisms: an integrated approach to understanding targeted therapy. PLoS Biol. 16:1–29, 2018.

    Google Scholar 

  26. Klein, P., M. A. Lemmon, I. Lax, and J. Schlessinger. On the nature of low- and high-affinity EGF receptors on living cells. PNAS 103:5735–5740, 2006.

    Google Scholar 

  27. Kohno, M., and J. Pouyssegur. Targeting the ERK signaling pathway in cancer therapy. Ann. Med. 38:200–211, 2006.

    Google Scholar 

  28. Kudo, T., et al. Live-cell measurements of kinase activity in single cells using translocation reporters. Nat. Protoc. 13:155–169, 2017.

    Google Scholar 

  29. Kuo, Y.-H., et al. dual inhibition of key proliferation signaling pathways in triple-negative breast cancer cells by a novel derivative of Taiwanin A. Mol. Cancer Ther. 16:480–493, 2017.

    Google Scholar 

  30. Lee, R. E. C., S. R. Walker, K. Savery, D. A. Frank, and S. Gaudet. Fold change of nuclear NF-κB determines TNF-induced transcription in single cells. Mol. Cell 53:867–879, 2014.

    Google Scholar 

  31. Marino, S., I. B. Hogue, C. J. Ray, and D. E. Kirschner. A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254:178, 2009.

    MathSciNet  MATH  Google Scholar 

  32. Mendoza, M. C., E. Emrah Er., and J. Blenis. The Ras-ERK and PI3K-mTOR pathways: cross-talk and compensation. Trends Biochem. Sci. 36:320–328, 2011.

    Google Scholar 

  33. Moelling, K., K. Schad, M. Bosse, S. Zimmermann, and M. Schweneker. Regulation of Raf-Akt cross-talk. J. Biol. Chem. 277:31099–31106, 2002.

    Google Scholar 

  34. Mosadegh, B., W. Saadi, S. J. Wang, and N. L. Jeon. Epidermal growth factor promotes breast cancer cell chemotaxis in CXCL12 gradients. Biotechnol. Bioeng. 100:1205–1213, 2008.

    Google Scholar 

  35. Nitulescu, G. M., et al. The Akt pathway in oncology therapy and beyond (Review). Int. J. Oncol. 53:2319–2331, 2018.

    Google Scholar 

  36. Ozawa, P., et al. Role of CXCL12 and CXCR4 in normal cerebellar developmentand medulloblastoma. Int. J. Cancer 138:10–13, 2014.

    Google Scholar 

  37. Pinilla-Macua, I., S. C. Watkins, and A. Sorkin. Endocytosis separates EGF receptors from endogenous fluorescently labeled HRas and diminishes receptor signaling to MAP kinases in endosomes. Proc. Natl. Acad. Sci. U. S. A. 113:2122–2127, 2016.

    Google Scholar 

  38. Posada, I. M. D., B. Lectez, F. A. Siddiqui, C. Oetken-Lindholm, M. Sharma, and D. Abankwa. Opposite feedback from mTORC1 to H-ras and K-ras4B downstream of SREBP1. Sci. Rep. 7:1–14, 2017.

    Google Scholar 

  39. Real, R., and J. M. Vargas. The probabilistic basis of Jaccard’s index of similarity. Syst. Biol. 45:380–385, 1996.

    Google Scholar 

  40. Regot, S., J. J. Hughey, B. T. Bajar, S. Carrasco, and M. W. Covert. High-sensitivity measurements of multiple kinase activities in live single cells. Cell 157:1724–1734, 2014.

    Google Scholar 

  41. Rodríguez-Nieves, J. A., S. C. Patalano, D. Almanza, M. Gharaee-Kermani, and J. A. Macoska. CXCL12/CXCR4 axis activation mediates prostate myofibroblast phenoconversion through non-canonical EGFR/MEK/ERK signaling. PLoS ONE 11:1–14, 2016.

    Google Scholar 

  42. Sarbassov, D. D., et al. Prolonged rapamycin treatment inhibits mTORC2 assembly and Akt/PKB. Mol. Cell 22:159–168, 2006.

    Google Scholar 

  43. Saxton, R. A., and D. M. Sabatini. mTOR signaling in growth, metabolism, and disease. Cell 168:960–976, 2017.

    Google Scholar 

  44. Serra, V., et al. PI3K inhibition results in enhanced HER signaling and acquired ERK dependency in HER2-overexpressing breast cancer. Oncogene 30:2547–2557, 2011.

    Google Scholar 

  45. Seshacharyulu, P., M. Ponnusamy, D. Haridas, M. Jain, A. Ganti, and S. K. Batra. Targeting the EGFR signaling pathway in cancer therapy. Expert Opin Ther Targets 16:15–31, 2012.

    Google Scholar 

  46. Shimizu, T., et al. The clinical effect of the dual-targeting strategy involving PI3K/AKT/mTOR and RAS/MEK/ERK pathways in patients with advanced cancer. Clin. Cancer Res. 18:2316–2326, 2012.

    Google Scholar 

  47. Sigismund, S., D. Avanzato, and L. Lanzetti. Emerging functions of the EGFR in cancer. Mol. Oncol. 12:3–20, 2018.

    Google Scholar 

  48. Snijder, B., and L. Pelkmans. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12:119–125, 2011.

    Google Scholar 

  49. Sobolik, T., Y. Su, S. Wells, G. D. Ayers, and R. S. Cook. CXCR4 drives the metastatic phenotype in breast cancer through induction of CXCR2 and activation of MEK and PI3K pathways. Mol. Biol. Cell 25:566, 2014.

    Google Scholar 

  50. Spencer, S. L., S. D. Cappell, F. C. Tsai, K. W. Overton, C. L. Wang, and T. Meyer. The proliferation-quiescence decision is controlled by a bifurcation in CDK2 activity at mitotic exit. Cell 155:369, 2013.

    Google Scholar 

  51. Spinosa, P. C., et al. Short-term cellular memory tunes the signaling responses of the chemokine receptor CXCR4. Sci. Signal. 12:eaaw4204, 2019.

    Google Scholar 

  52. Sumit, M., A. Jovic, R. R. Neubig, S. Takayama, and J. J. Linderman. A two-pulse cellular stimulation test elucidates variability and mechanisms in signaling pathways. Biophys. J . 116:962–973, 2019.

    Google Scholar 

  53. van Mourik, S., C. ter Braak, H. Stigter, and J. Molenaar. Prediction uncertainty assessment of a systems biology model requires a sample of the full probability distribution of its parameters. PeerJ 2:e433, 2014.

    Google Scholar 

  54. Vanlier, J., C. Tiemann, P. Hilbers, and N. van Riel. Parameter uncertainty in biochemical models described by ordinary differential equations. Math. Biosci. 246:305–314, 2013.

    MathSciNet  MATH  Google Scholar 

  55. Wang, Y., S. Pennock, X. Chen, and Z. Wang. Endosomal signaling of epidermal growth factor receptor stimulates signal transduction pathways leading to cell survival. Mol. Cell. Biol. 22:7279–7290, 2002.

    Google Scholar 

  56. Wee, P., and Z. Wang. Epidermal growth factor receptor cell proliferation signaling pathways. Cancers (Basel). 9:1–45, 2017.

    Google Scholar 

  57. Wendel, C., et al. CXCR4/CXCL12 participate in extravasation of metastasizing breast cancer cells within the liver in a rat model. PLoS ONE 7:e30046, 2012.

    Google Scholar 

  58. Yao, J., A. Pilko, and R. Wollman. Distinct cellular states determine calcium signaling response. Mol. Syst. Biol. 12:894, 2016.

    Google Scholar 

  59. Yuan, T. L., G. Wulf, L. Burga, and L. C. Cantley. Cell-to-cell variability in PI3K protein level regulates PI3K-AKT pathway activity in cell populations. Curr. Biol. 21:173–183, 2011.

    Google Scholar 

  60. Zhang, Q., et al. NF-κB dynamics discriminate between TNF doses in single cells. Cell Syst. 5:638–645, 2017.

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge funding from United States National Institutes of Health Grants R01CA196018, R01CA238042, R01CA238023, R33CA225549, R37CA222563, R50CA221807, and U01CA210152. P.C.S was supported by the NIH Microfluidics in Biomedical Sciences Training Program NIBIB T32 EB005582. B.H was supported by an American Cancer Society - Michigan Cancer Research Fund Postdoctoral Fellowship, PF-18-236-01-CCG. The authors also thank Annabel Levinson for technical assistance.

Author Contributions

P.C.S, P.C.K, J.J.L, G.D.L, and K.E.L conceptualized the study. B.H and K.E.L provided reagents. P.C.S, P.C.K, and K.E.L performed experiments and analyzed data. P.C.S, P.C.K., J.J.L, G.D.L, and K.E.L wrote the manuscript. All authors edited the manuscript before submission.

Conflict of interest

G.D.L receives research funding and serves on the scientific advisory board for Polyphor.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kathryn E. Luker or Jennifer J. Linderman.

Additional information

Associate Editor Michael R. King oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (DOCX 5677 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spinosa, P.C., Kinnunen, P.C., Humphries, B.A. et al. Pre-existing Cell States Control Heterogeneity of Both EGFR and CXCR4 Signaling. Cel. Mol. Bioeng. 14, 49–64 (2021). https://doi.org/10.1007/s12195-020-00640-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12195-020-00640-1

Keywords

Navigation