Skip to main content

Advertisement

Log in

Spatial and seasonal variability of sedimentary features and nitrogen benthic metabolism in a tropical coastal area (Taganga Bay, Colombia Caribbean) impacted by a sewage outfall

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

The effects of anthropogenic pressures in coastal areas are extensively studied in temperate but not in tropical zones, where their impact might be amplified by high water temperatures and upwelling phenomena. Sedimentary features and benthic metabolism were studied during the non upwelling (NUPW) and upwelling (UPW) seasons in Taganga Bay (Colombia). The bay is impacted by a submarine outfall of virtually untreated, organic and nutrient-rich wastewater. Samplings were performed in November 2017 (NUPW) and in January–February 2018 (UPW) at 4 stations located in the proximity and 100, 750 and 1800 m far from the outfall, respectively, at depths between 22 and 28 m. Aerobic respiration, denitrification, dissimilative nitrate reduction to ammonium (DNRA) and nutrient fluxes were measured. The influence of the outfall was detectable 750 and 1800 m away from the point pollution source, where δ13C data suggested that ~ 40 and ~ 20% of organic inputs were terrigenous, respectively. In the proximity of the outfall benthic oxygen demand peaked and the presence of Beggiatoa mats suggested reoxidation of sulphides, that were abundant in pore water. Under sulfidic conditions, DNRA was the major driver of nitrate demand, whereas at stations far from the outfall, denitrification dominated nitrate consumption. Organic matter and nitrate inputs to the bay during the UPW season enhanced the effects of the outfall by increasing aerobic respiration and DNRA. Higher N availability during the UPW season reversed fluxes of molecular nitrogen and turned the sediments of 3 out of 4 sites from net sinks to net N2 sources. Results from this study suggest that the analysis of sediments allows tracing the impact of the outfall and that such impact is enhanced during the upwelling season. In tropical areas, marine outfalls and upwelling may act in synergy and contribute to ecosystem deterioration due to high temperatures, increase of microbial respiration, sulphide toxicity and benthic biodiversity loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Alkhatib M, Lehmann MF, Del Giorgio PA (2012) The nitrogen isotope effect of benthic remineralization-nitrification- denitrification coupling in an estuarine environment. Biogeosciences 9(5):1633–1646. https://doi.org/10.5194/bg-9-1633-2012

    Article  Google Scholar 

  • Aller RC (1988) Benthic fauna and biogeochemical processes in marine sediments: the role of burrow structures BT—nitrogen cycling in coastal marine environments. In: Blackburn TH, Sørensen J (eds) Nitrogen cycling in coastal marine environments. Wiley, New York, pp 301–338

    Google Scholar 

  • Aller RC (1994) Bioturbation and remineralization of sedimentary organic matter: effects of redox oscillation. Chem Geol 114(3–4):331–345. https://doi.org/10.1016/0009-2541(94)90062-0

    Article  Google Scholar 

  • An S, Gardner WS (2002) Dissimilatory nitrate reduction to ammonium (DNRA) as a nitrogen link, versus denitrification as a sink in a shallow estuary (Laguna Madre/Baffin Bay, Texas). Mar Ecol Prog Ser 237:41–50. https://doi.org/10.3354/meps237041

    Article  Google Scholar 

  • Andrade CA, Barton ED (2005) The Guajira upwelling system. Cont Shelf Res 25(9):1003–1022. https://doi.org/10.1016/j.csr.2004.12.012

    Article  Google Scholar 

  • Arévalo-Martínez DL, Franco-Herrera A (2008) Características oceanográficas de la surgencia frente a la ensenada de Gaira, Departamento de Magdalena, época seca menor de 2006. Boletín de Investigaciones Marinas y Costeras 37(2):131–162

    Google Scholar 

  • Aspila K, Agemian H, Chau ASY (1976) A semi-automated method for the determination of inorganic, organic and total phosphate in sediments. Analyst 101:187–197

    Article  Google Scholar 

  • Banta GT, Giblin AE, Hobbie JE et al (1995) Benthic respiration and nitrogen release in Buzzards Bay, Massachusetts. J Mar Res 53:107–135

    Article  Google Scholar 

  • Bayraktarov E, Wild C (2014) Spatiotemporal variability of sedimentary organic matter supply and recycling processes in coral reefs of Tayrona National Natural Park, Colombian Caribbean. Biogeosciences 11(11):2977–2990. https://doi.org/10.5194/bg-11-2977-2014

    Article  Google Scholar 

  • Bayraktarov E, Pizarro V, Eidens C et al (2013) Bleaching susceptibility and recovery of Colombian Caribbean corals in response to water current exposure and seasonal upwelling. PLoS ONE 8(11):1–11. https://doi.org/10.1371/journal.pone.0080536

    Article  Google Scholar 

  • Bayraktarov E, Bastidas-Salamanca ML, Wild C (2014) The physical environment in coral reefs of the Tayrona National Natural Park (Colombian Caribbean) in response to seasonal upwelling. Boletín de Investigaciones Marinas y Costeras 43(1):137–157

    Google Scholar 

  • Bedard-Haughn A, Van Groenigen JW, Van Kessel C (2003) Tracing15N through landscapes: potential uses and precautions. J Hydrol 272(1–4):175–190. https://doi.org/10.1016/S0022-1694(02)00263-9

    Article  Google Scholar 

  • Berelson WM, Johnson K, Coale K et al (2002) Organic matter diagenesis in the sediments of the San Pedro Shelf along a transect affected by sewage effluent. Cont Shelf Res 22:1101–1115

    Article  Google Scholar 

  • Bernard RJ, Mortazavi B, Kleinhuizen AA (2015) Dissimilatory nitrate reduction to ammonium (DNRA) seasonally dominates NO3− reduction pathways in an anthropogenically impacted sub-tropical coastal lagoon. Biogeochemistry 125(1):47–64. https://doi.org/10.1007/s10533-015-0111-6

    Article  Google Scholar 

  • Bonaglia S, Nascimento FJA, Bartoli M et al (2014) Meiofauna increases bacterial denitrification in marine sediments. Nat Commun 5(5133):1005–1011. https://doi.org/10.1038/ncomms6133

    Article  Google Scholar 

  • Boynton WR, Ceballos MAC, Bailey EM et al (2018) Oxygen and nutrient exchanges at the sediment-water interface: a global synthesis and critique of estuarine and coastal data. Estuar Coasts 41(2):301–333. https://doi.org/10.1007/s12237-017-0275-5

    Article  Google Scholar 

  • Burd B, Macdonald T, Bertold S (2013) The effects of wastewater effluent and river discharge on benthic heterotrophic production, organic biomass and respiration in marine coastal sediments. Mar Pollut Bull 74(1):351–363. https://doi.org/10.1016/j.marpolbul.2013.06.029

    Article  Google Scholar 

  • Burgin AJ, Hamilton SK (2007) Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways. Front Ecol Environ 5(2):89–96. https://doi.org/10.1890/1540-9295(2007)5[89:HWOTRO]2.0.CO;2

    Article  Google Scholar 

  • Calder JA, Parker PL (1968) Stable carbon isotope ratios as indexes of petrochemical pollution of aquatic systems. Environ Sci Technol 2(7):535–539

    Article  Google Scholar 

  • Carstensen J, Conley DJ, Bonsdorff E, Gustafsson BG et al (2014) Hypoxia in the Baltic Sea: biogeochemical cycles, benthic fauna, and management. Ambio 43(1):26–36. https://doi.org/10.1007/s13280-013-0474-7

    Article  Google Scholar 

  • Church TM, Sommerfield CK, Velinsky DJ et al (2006) Marsh sediments as records of sedimentation, eutrophication and metal pollution in the urban Delaware Estuary. Mar Chem 102(1–2):72–95. https://doi.org/10.1016/j.marchem.2005.10.026

    Article  Google Scholar 

  • Cline JD (1969) Spectrophometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14(3):454–458. https://doi.org/10.4319/lo.1969.14.3.0454

    Article  Google Scholar 

  • Dalsgaard T (2003) Benthic primary production and nutrient cycling in sediments with benthic microalgae and transient accumulation of macroalgae. Limnol Oceanogr 48(6):2138–2150. https://doi.org/10.4319/lo.2003.48.6.2138

    Article  Google Scholar 

  • Dalsgaard T, Krause-Jensen D (2006) Monitoring nutrient release from fish farms with macroalgal and phytoplankton bioassays. Aquaculture 256(1–4):302–310

    Article  Google Scholar 

  • Dalsgaard T, Nielsen LP, Brotas V et al (2000) Protocol handbook for nitrogen cycling in estuaries. NICE, London

    Google Scholar 

  • Dalsgaard T, Thamdrup B, Canfield DE (2005) Anaerobic ammonium oxidation (anammox) in the marine environment. Res Microbiol 156(4):457–464. https://doi.org/10.1016/j.resmic.2005.01.011

    Article  Google Scholar 

  • Dang DH, Evans RD, Durrieu G et al (2018) Quantitative model of carbon and nitrogen isotope composition to highlight phosphorus cycling and sources in coastal sediments (Toulon Bay, France). Chemosphere 195:683–692. https://doi.org/10.1016/j.chemosphere.2017.12.109

    Article  Google Scholar 

  • De Brabandere L, Bonaglia S, Kononets MY et al (2015) Oxygenation of an anoxic fjord basin strongly stimulates benthic denitrification and DNRA. Biogeochemistry 126(1–2):131–152. https://doi.org/10.1007/s10533-015-0148-6

    Article  Google Scholar 

  • Diaz RJ (2001) Overview of hypoxia around the world. J Environ Qual 30(2):275–281. https://doi.org/10.2134/jeq2001.302275x

    Article  Google Scholar 

  • Diaz-Pulido G, Garzón-Ferreira J (2002) Seasonality in algal assemblages on upwelling-influenced coral reefs in the Colombian Caribbean. Bot Mar 45(3):284–292. https://doi.org/10.1515/BOT.2002.028

    Article  Google Scholar 

  • Díaz-Rocca LH, Causado-Rodríguez E (2007) La insostenibilidad del desarrollo urbano: El caso de Santa Marta-Colombia. Clío América 1(1):64–100

    Google Scholar 

  • Dong LF, Sobey MN, Smith CJ et al (2011) Dissimilatory reduction of nitrate to ammonium, not denitrification or anammox, dominates benthic nitrate reduction in tropical estuaries. Limnol Oceanogr 56(1):279–291. https://doi.org/10.4319/lo.2011.56.1.0279

    Article  Google Scholar 

  • Downing JA, Mcclain M, Twilley R et al (1999) The impact of accelerating land-use change on the N-cycle of tropical aquatic ecosystems: current conditions and projected changes. Biogeochemistry 46:109–148

    Google Scholar 

  • Escobar A (1988) Estudio de algunos aspectos ecologicos y de la contaminacion bacteriana en la Bahia de Santa Marta, Caribe Colombiano. Boletin de Investigaciones Marinas y Costeras 18:39–57

    Google Scholar 

  • Eyre BD, Rysgaard S, Dalsgaard T, Christensen PB (2002) Comparison of isotope pairing and N2:Ar methods for measuring sediment denitrification—assumptions, modifications, and implications. Estuaries 25(6A):1077–1087

    Article  Google Scholar 

  • Eyre BD, Maher DT, Squire P (2013) Quantity and quality of organic matter (detritus) drives N2 effluxes (net denitrification) across seasons, benthic habitats, and estuaries. Glob Biogeochem Cycles 27(4):1083–1095. https://doi.org/10.1002/2013GB004631

    Article  Google Scholar 

  • Fajardo G (1979) Surgencia costera en las proximidades de la península colombiana de La Guajira. Boletin Cientifico CIOH 2:7–19

    Article  Google Scholar 

  • Ferguson A, Eyre B (2012) Interaction of benthic microalgae and macrofauna in the control of benthic metabolism, nutrient fluxes and denitrification in a shallow sub-tropical coastal embayment (western Moreton Bay, Australia). Biogeochemistry 112(1–3):423–440. https://doi.org/10.1007/s10533-012-9736-x

    Article  Google Scholar 

  • Fox J (2005) The R commander: a basic-statistics graphical user interface to R. J Stat Softw 14(9):1–42

    Article  Google Scholar 

  • Franco-Herrera A, Castro L, Tigreros P (2006) Plankton dynamics in the south-central Caribbean Sea: strong seasonal changes in a coastal tropical system. Carib J Sci 42(1):24–38

    Google Scholar 

  • Gao J, Wang Y, Pan S et al (2008) Spatial distributions of organic carbon and nitrogen and their isotopic compositions in sediments of the Changjiang Estuary and its adjacent sea area. J Geog Sci 18(1):46–58. https://doi.org/10.1007/s11442-008-0046-0

    Article  Google Scholar 

  • Garcés-Ordóñez O, Arteaga E, Obando P et al (2016) Atención a eventuales emergencias ambientales en la zona marino-costera del departamento del Magdalena. Convenio CORPAMAG-INVEMAR; código: PRY-CAM-011-14. Informe técnico final (Issue 14)

  • García F (2013) Modelación de los efectos del emisario submarino de santa marta sobre la calidad del agua. PhD dissertation, Universidad de Antioquia, Facultad de Ingeniería.

  • García F, Palacio C, Garcia U (2012) Water quality at Santa Marta Coastal Area (Colombia). Dyna 79(173):85–94

    Google Scholar 

  • García-Hoyos LM, Franco-Herrera A, Ramire-Barón JS et al (2010) Dinámica océano-atmósfera y su influencia en la biomasa fitoplanctónica en la zona costera del epartamento del Magdalena. Boletín de Investigaciones Marinas y Costeras 39(2):307–335

    Google Scholar 

  • Gardner WS, McCarthy MJ (2009) Nitrogen dynamics at the sediment-water interface in shallow, sub-tropical Florida Bay: why denitrification efficiency may decrease with increased eutrophication. Biogeochemistry 95(2):185–198. https://doi.org/10.1007/s10533-009-9329-5

    Article  Google Scholar 

  • Gardner WS, McCarthy MJ, An S et al (2006) Nitrogen fixation and dissimilatory nitrate reduction to ammonium (DNRA) support nitrogen dynamics in Texas estuaries. Limnol Oceanogr 51(1 II):558–568

    Article  Google Scholar 

  • Gearing JN, Gearing PJ, Rudnick DT et al (1984) Isotopic variability of organic carbon in a phytoplankton-based, temperate estuary. Geochim Cosmochim Acta 48(5):1089–1098. https://doi.org/10.1016/0016-7037(84)90199-6

    Article  Google Scholar 

  • Giblin AE, Hopkinson CS, Tucker J (1997) Benthic metabolism and nutrient cycling in Boston Harbor, Massachusetts. Estuaries 20(2):346–364. https://doi.org/10.1007/BF02690378

    Article  Google Scholar 

  • Grall J, Chauvaud L (2002) Marine eutrophication and benthos: the need for new approaches and concepts. Glob Change Biol 8(9):813–830

    Article  Google Scholar 

  • Grasshoff KM, Ehrhardt M, Kremling K (1983) Methods of seawater analysis, 2nd edn. Verlag Chemie, Berlin

    Google Scholar 

  • Hall POJ, Almroth E, Bonaglia S et al (2017) Influence of natural oxygenation of baltic proper deep water on benthic recycling and removal of phosphorus, nitrogen, silicon and carbon. Front Mar Sci 4(February):1–14. https://doi.org/10.3389/fmars.2017.00027

    Article  Google Scholar 

  • Hargrave BT, Holmer M, Newcombe CP (2008) Towards a classification of organic enrichment in marine sediments based on biogeochemical indicators. Mar Pollut Bull 56(5):810–824. https://doi.org/10.1016/j.marpolbul.2008.02.006

    Article  Google Scholar 

  • Hopkinson CS, Giblin AE, Tucker J (2001) Benthic metabolism and nutrient regeneration on the continental shelf of Eastern Massachusetts, USA. Mar Ecol Prog Ser 224:1–19. https://doi.org/10.3354/meps224001

    Article  Google Scholar 

  • Howarth R, Chan F, Conley DJ et al (2011) Coupled biogeochemical cycles: Eutrophication and hypoxia in temperate estuaries and coastal marine ecosystems. Front Ecol Environ 9(1):18–26. https://doi.org/10.1890/100008

    Article  Google Scholar 

  • Koop-Jakobsen K, Giblin AE (2009) Anammox in tidal marsh sediments: the role of salinity, nitrogen loading, and marsh vegetation. Estuar Coasts 32(2):238–245. https://doi.org/10.1007/s12237-008-9131-y

    Article  Google Scholar 

  • Legendre P, Legendre L (1998) Numerical ecology, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Li Y, Zhang H, Tu C et al (2016) Sources and fate of organic carbon and nitrogen from land to ocean: identified by coupling stable isotopes with C/N ratio. Estuar Coast Shelf Sci 181:114–122. https://doi.org/10.1016/j.ecss.2016.08.024

    Article  Google Scholar 

  • Lunstrum A, Aoki LR (2016) Oxygen interference with membrane inlet mass spectrometry may overestimate denitrification rates calculated with the isotope pairing technique. Limnol Oceanogr Methods 14(7):425–431. https://doi.org/10.1002/lom3.10101

    Article  Google Scholar 

  • Mancera-Pineda J, Pinto G, Vilardy S (2013) Patrones de distribución espacial de masas de agua en la bahía de Santa Marta, Caribe Colombiano: Importancia relativa del upwelling y outwelling. Boletín de Investigaciones Marinas y Costeras 42(2):329–360

    Google Scholar 

  • Mariotti A, Germon JC, Hubert P et al (1981) Experimental determination of nitrogen kinetic isotope fractionation: some principles; illustration for the denitrification and nitrification processes. Plant Soil 62(3):413–430. https://doi.org/10.1007/BF02374138

    Article  Google Scholar 

  • Martínez S, Acosta A (2005) Cambio temporal en la Estructura de la comunidad coralina del área de Santa Marta - Parque Nacional Natural Tayrona (Caribe Colombiano). Boletin de Investigaciones Marinas y Costeras 34:161–192. https://doi.org/10.1213/ane.0b013e31816e5128

    Article  Google Scholar 

  • McCarthy MJ, Newell SE, Carini SA et al (2015) Denitrification dominates sediment nitrogen removal and is enhanced by bottom-water hypoxia in the Northern Gulf of Mexico. Estuar Coasts 38(6):2279–2294. https://doi.org/10.1007/s12237-015-9964-0

    Article  Google Scholar 

  • Mermillod-Blondin F, Rosenberg R, Norling K et al (2004) Influence of bioturbation by three benthic infaunal species on microbial communities and biogeochemical processes in marine sediment. Aquat Microb Ecol 36:271–284. https://doi.org/10.3354/ame036271

    Article  Google Scholar 

  • Meyers PA (1997) Organic geochemical proxies of paleoceanographic, paleoimnologic, and paleoclimatic processes. Org Geochem 27(5–6):213–250. https://doi.org/10.1016/S0146-6380(97)00049-1

    Article  Google Scholar 

  • Newell SE, McCarthy MJ, Gardner WS et al (2016) Sediment nitrogen fixation: a call for re-evaluating coastal N budgets. Estuar Coasts 39(6):1626–1638. https://doi.org/10.1007/s12237-016-0116-y

    Article  Google Scholar 

  • Nielsen LP (1992) Denitrificaction in sediment determined from nitrogen isotope pairing. FEMS Microbiol Ecol 86:357–362

    Article  Google Scholar 

  • Nixon SW (1995) Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia 41(1):199–219. https://doi.org/10.1080/00785236.1995.10422044

    Article  Google Scholar 

  • Paramo J, Correa M, Núñez S (2011) Evidencias de desacople físico-biológico en el sistema de surgencia en la Guajira, caribe Colombiano. Rev Biol Mar Oceanogr 46(3):421–430. https://doi.org/10.4067/S0718-19572011000300011

    Article  Google Scholar 

  • Preisler A, De Beer D, Lichtschlag A et al (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME J 1(4):341–353. https://doi.org/10.1038/ismej.2007.50

    Article  Google Scholar 

  • Ramírez G (1981) Características Fisico-Químicas de la Bahía de Santa Marta (Agosto 1980-Julio 1981). Boletín de Investigaciones Marinas y Costeras 13:111–121

    Google Scholar 

  • Ramírez-Barón JS, Franco-Herrera A, García-Hoyos LM, López-Cerón DA (2010) La comunidad fitoplanctónica durante eventos de surgencia y no surgencia, en la Zona Costera del Departamento del Magdalena, Caribe colombiano. Boletín de Investigaciones Marinas y Costeras 39(2):233–263

    Google Scholar 

  • Ramos-Ortega LM, Vidal LA, Vilardy S et al (2008) Análisis de la contaminación microbiológica (coliformes totales y fecales) en la bahía de Santa Marta, caribe colombiano. Acta Biol Colomb 13(3):87–98

    Google Scholar 

  • Robertson EK, Bartoli M, Brüchert V (2019) Application of the isotope pairing technique in sediments: use, challenges, and new directions. Limnol Oceanogr Methods 17(2):112–136. https://doi.org/10.1002/lom3.10303

    Article  Google Scholar 

  • Rooze J, Meile C (2016) The effect of redox conditions and bioirrigation on nitrogen isotope fractionation in marine sediments. Geochim Cosmochim Acta 184:227–239. https://doi.org/10.1016/j.gca.2016.04.040

    Article  Google Scholar 

  • Rosenberg R, Loo LO (1988) Marine eutrophication induced oxygen deficiency: effects on soft bottom fauna, western Sweden. Ophelia 29(3):213–225. https://doi.org/10.1080/00785326.1988.10430830

    Article  Google Scholar 

  • Rueda-Roa DT, Muller-Karger FE (2013) The southern Caribbean upwelling system: sea surface temperature, wind forcing and chlorophyll concentration patterns. Deep Sea Res I 78:102–114. https://doi.org/10.1016/j.dsr.2013.04.008

    Article  Google Scholar 

  • Salzwedel H, Müller K (1983) A summary of Meteorological and hydrological data from the Bay of Santa Marta, Colombian Caribbean. Boletin de Investigaciones Marinas y Costeras 13:67–83

    Google Scholar 

  • Sampaio L, Freitas R, Máguas C et al (2010) Coastal sediments under the influence of multiple organic enrichment sources: an evaluation using carbon and nitrogen stable isotopes. Mar Pollut Bull 60(2):272–282. https://doi.org/10.1016/j.marpolbul.2009.09.008

    Article  Google Scholar 

  • Schlunz B, Schneider RR, Muller PJ et al (1999) Terrestrial organic carbon accumulation on the Amazon deep sea fan during the last glacial sea level low stand. Chem Geol 159(1–4):263–281

    Article  Google Scholar 

  • Smith J, Burford MA, Revill AT et al (2012) Effect of nutrient loading on biogeochemical processes in tropical tidal creeks. Biogeochemistry 108(1–3):359–380. https://doi.org/10.1007/s10533-011-9605-z

    Article  Google Scholar 

  • Song GD, Liu SM, Marchant H, Kuypers MMM, Lavik G (2013) Anammox, denitrification and dissimilatory nitrate reduction to ammonium in the East China Sea sediment. Biogeosciences 10(11):6851–6864. https://doi.org/10.5194/bg-10-6851-2013

    Article  Google Scholar 

  • Testa JM, Kemp WM (2011) Oxygen—dynamics and biogeochemical consequences. In: Testa JM, Kemp WM (eds) Treatise on estuarine and coastal science, vol 5. Elsevier, Amsterdam

    Google Scholar 

  • Trimmer M, Risgaard-Petersen N, Nicholls JC et al (2006) Direct measurement of anaerobic ammonium oxidation (anammox) and denitrification in intact sediment cores Mark. Mar Ecol Prog Ser 326:37–47. https://doi.org/10.3354/meps326037

    Article  Google Scholar 

  • Tucker J, Giblin A (2010) Quality Assurance Project Plan (QAPP) for benthic nutrient flux studies: 2010. Massachusetts Water Resources Authority, Boston

    Google Scholar 

  • Vega-Sequeda J, Rodríguez-Ramírez A, Reyes-Nivia MC et al (2008) Formaciones Coralinas Del Área De Santa Marta: Estado Y Patrones De Distribución Espacial De La Comunidad Bentonica. Boletin de Investigaciones Marinas y Costeras 37(2):87–105

    Google Scholar 

  • Wang C, Lv Y, Li Y (2018) Riverine input of organic carbon and nitrogen in water-sediment system from the Yellow River estuary reach to the coastal zone of Bohai Sea, China. Cont Shelf Res 157:1–9

    Article  Google Scholar 

  • Warembourg FR (1993) Nitrogen fixation in soil and plant systems. In: Knowles R, Blackburn TH (eds) Nitrogen isotope techniques. Academic Press, San Diego, pp 127–156

    Chapter  Google Scholar 

  • Zhou J, Wu Y, Zhang J et al (2006) Carbon and nitrogen composition and stable isotope as potential indicators of source and fate of organic matter in the salt marsh of the Changjiang Estuary, China. Chemosphere 65(2):310–317. https://doi.org/10.1016/j.chemosphere.2006.02.026

    Article  Google Scholar 

  • Zilius M, Bartoli M, Bresciani M, Katarzyte M et al (2014) Feedback mechanisms between cyanobacterial blooms, transient hypoxia, and benthic phosphorus regeneration in shallow coastal environments. Estuar Coasts 37(3):680–694. https://doi.org/10.1007/s12237-013-9717-x

    Article  Google Scholar 

  • Zilius M, Vybernaite-Lubiene I, Vaiciute D et al (2018) The influence of cyanobacteria blooms on the attenuation of nitrogen throughputs in a Baltic coastal lagoon. Biogeochemistry 141(2):143–165. https://doi.org/10.1007/s10533-018-0508-0

    Article  Google Scholar 

Download references

Acknowledgements

This study was funded by COLCIENCIAS in the Call No. 714-2015—Research projects, technological development and innovation in environment, oceans and biodiversity (Contract—FP44842-020-2016). Doctoral Training Program (COLCIENCIAS—2014) supported PhD student. Prof. Marco Bartoli’s trip to Colombia to carry out field campaigns was supported by the call Fellows Colombia Program (ICETEX—2017) – Inter-institutional Ph.D Program – Marine Sciences and Universidad Nacional de Colombia, campus Medellin (Researchers Mobility Call—2017). Dr. Andres Franco and Alfonso Gamero of the Universidad Jorge Tadeo Lozano, campus Santa Marta are acknowledged for providing laboratory facilities and logistic support for this study. Prof. Bartoli is thanked by supporting chemistry analyses in Parma University (Italy), Ferrara University (Italy) and Marine Research Institute of Klaipeda University (Lithuania). Prof. Paola Iacumin and Dott. and Antonietta Di Matteo from Geology Department of Parma University and Irma Lubiene from Klaipeda University are acknowledged for the technical assistance in isotopic composition and nutrients analyses. We are grateful to two anonymous reviewers for their accurate and constructive comments. We are thankful with Johann Camil Delgado, Maximiliano Arredondo, Lina Maria Ramirez and Tayrona dive center at Taganga for their help in core collection and sampling. Fabio Suarez of Faro Tecnológico company is acknowledged by support in the field campaigns logistic.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: [DMAG, MB and MT-B]; Methodology: [DMAG and MB]; formal analysis and investigation: [DMAG and MB]; writing—original draft preparation: [DMAG and MB]; writing—review and editing: [DMAG, MB, DGS and MT-B], Funding acquisition [DMAG, MB, DGS and MT-B], Supervision: [MB, DGS and MT-B].

Corresponding authors

Correspondence to Diana M. Arroyave Gómez or Marco Bartoli.

Additional information

Responsible Editor: Maren Voss.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 684 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arroyave Gómez, D.M., Gallego Suárez, D., Bartoli, M. et al. Spatial and seasonal variability of sedimentary features and nitrogen benthic metabolism in a tropical coastal area (Taganga Bay, Colombia Caribbean) impacted by a sewage outfall. Biogeochemistry 150, 85–107 (2020). https://doi.org/10.1007/s10533-020-00689-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10533-020-00689-0

Keywords

Navigation