Skip to main content
Log in

Phase transition of cosmological model with statistical techniques

  • Original Article
  • Published:
Astrophysics and Space Science Aims and scope Submit manuscript

Abstract

In the present communication, we investigated flat Friedmann-Lemaître-Robertson-Walker mathematical model of universe in \(f (R,T )\) theory of gravity with bulk viscous fluid as a source of energy. A system of modified field equations with cosmological constant has been solved by considering time-dependent deceleration parameter (DP) (Mishra et al. in Eur. Phys. J. Plus 127:137, 2012). Suitable assumption yields the scale factor as \(a(t)=(\sinh (\eta t))^{\frac{1}{m}}\), where, \(\eta \) and \(m>0\) are arbitrary constants. The authors have also observed the nature of various energy conditions graphically. In addition, we constrained the model using recent Hubble and Pantheon Type 1a supernova observational data and obtained best fit curves of Hubble parameter \(H(z)\) and apparent magnitude \(m_{B}(z)\) from \(\chi ^{2}\) statistical test. The findings of a constructed model are in good agreement with the recently reported data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ade, P.A.R., et al.: Planck 2015 results-XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016)

    Google Scholar 

  • Aditya, Y., Reddy, D.R.K.: Dynamics of perfect fluid cosmological model in the presence of massive scalar field in \(f(R,T)\) gravity. Astrophys. Space Sci. 364, 3 (2019)

    ADS  MathSciNet  Google Scholar 

  • Akarsu, d., Dereli, T.: Cosmological models with linearly varying deceleration parameter. Int. J. Theor. Phys. 51, 612 (2012)

    MATH  Google Scholar 

  • Alam, S., et al.: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: cosmological analysis of DR12 galaxy sample. Mon. Not. R. Astron. Soc. 470, 2617–2652 (2017)

    ADS  Google Scholar 

  • Anderson, L., et al.: The clustering of galaxies in the SDSS-III baryon oscillation spectroscopic survey: measuring DA and H at \(z=0.57\) from the baryon acoustic peak in the data release 9 spectroscopic galaxy sample. Mon. Not. R. Astron. Soc. 439, 83 (2014)

    ADS  Google Scholar 

  • Arbab, A.I.: Cosmological models with variable cosmological and gravitational “Constants” and bulk viscous models. Gen. Relativ. Gravit. 29, 61–74 (1997)

    ADS  MathSciNet  MATH  Google Scholar 

  • Armendariz-Picon, T., et al.: k-Inflation. Phys. Lett. B 458, 209–218 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  • Bamba, K., Odintsov, S.D.: Inflation in a viscous fluid model. Eur. Phys. J. C 76, 18 (2016)

    ADS  Google Scholar 

  • Barrow, J.D.: The deflationary universe: an instability of the de Sitter universe. Phys. Lett. B 180, 335 (1986)

    ADS  MathSciNet  Google Scholar 

  • Bautista, J.E., et al.: Measurements of baryon acoustic oscillation correlations at \(z=2.3\) with SDSS DR12 Ly\(\alpha \)-forests. Astron. Astrophys. 603, A12 (2017)

    Google Scholar 

  • Bennet, C.L., et al.: First year Wilkinson microwave anisotropy probe (WMAP) observations: preliminary maps and basic results. Astrophys. J. Suppl. Ser. 148, 1 (2003)

    ADS  Google Scholar 

  • Bennett, C.L., et al.: Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: final maps and results. Astrophys. J. Suppl. Ser. 208, 20 (2013)

    ADS  Google Scholar 

  • Bhatti, M.Z., Yousaf, Z., Yousaf, M.: Stability of self-gravitating anisotropic fluids in \(f(R,T)\) gravity. Phys. Dark Universe 28, 100501 (2020)

    Google Scholar 

  • Blake, C., et al.: The WiggleZ dark energy survey: joint measurements of the expansion and growth history at \(Z<1\). Mon. Not. R. Astron. Soc. 425, 405–414 (2012)

    ADS  Google Scholar 

  • Brevik, I., Grøn, Ø., de Haro, J., Odintsov, S.D., Saridakis, E.N.: Viscous cosmology for early-and late-time universe. Int. J. Mod. Phys. D 26, 1730024 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  • Capozziello, S., et al.: Observational constraints on dark energy with generalized equation of state. Phys. Rev. D 73, 043512 (2006)

    ADS  Google Scholar 

  • Carlevaro, N., Montani, G.: Bulk viscous effects on the early universe stability. Phys. Lett. A 20, 1729–1739 (2005)

    MATH  Google Scholar 

  • Chand, A., Mishra, R.K., Pradhan, A.: FRW cosmological models in Brans-Dicke theory of gravity with variable q and dynamical \(\Lambda \)-term. Astrophys. Space Sci. 361, 81 (2016)

    ADS  MathSciNet  Google Scholar 

  • Chiba, T., et al.: Kinetically driven quintessence. Phys. Rev. D 62, 023511 (2000)

    ADS  Google Scholar 

  • Chuang, C.H., Wang, Y.: Modelling the anisotropic two-point galaxy correlation function on small scales and single probe measurements of \(H(z)\), \(D_{A}(z)\) and \(f(z)\sigma g(z)\) from the Sloan Digital Sky Survey DR7 luminous red galaxies. Mon. Not. R. Astron. Soc. 435, 255–262 (2013)

    ADS  Google Scholar 

  • Delubac, T., et al.: Baryon acoustic oscillations in the Ly\(\alpha \) forest of BOSS DR11 quasars. Astron. Astrophys. 574, A59 (2015)

    Google Scholar 

  • Eckart, C.: The thermodynamics of irreversible processes. Phys. Rev. 58, 919 (1940)

    ADS  MATH  Google Scholar 

  • Feng, B., et al.: Dark energy constraints from the cosmic age and supernova. Phys. Lett. B 607, 35 (2005)

    ADS  Google Scholar 

  • Font-Ribera, A., et al.: Quasar-Lyman \(\alpha \) forest cross-correlation from BOSS DR11: baryon acoustic oscillations. J. Cosmol. Astropart. Phys. 1405, 027 (2014)

    ADS  MathSciNet  Google Scholar 

  • Freedman, W.L., et al.: The Carnigie-Chicago Hubble Program. VIII. An independent determination of the Hubble constant based on the tip of the red giant branch. Astrophys. J. 882, 34 (2019)

    ADS  Google Scholar 

  • Gaztanaga, E., et al.: Clustering of Luminous Red Galaxies IV: baryon acoustic peak in the line-of-sight direction and a direct measurement of \(H(z)\). Mon. Not. R. Astron. Soc. 399, 1663–1680 (2009)

    ADS  Google Scholar 

  • Goswami, G.K., Mishra, M., Pradhan, A.: Estimation of the cosmological parameters of the dust-filled universe: a simple approach. Iran. J. Sci. Technol. A 43, 653–661 (2019)

    MathSciNet  Google Scholar 

  • Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: \(f(R,T)\) gravity. Phys. Rev. D 84, 024020 (2011)

    ADS  Google Scholar 

  • Hossienkhani, H., et al.: Effect of low anisotropy on cosmological models by using supernova data. New Astron. 68, 65–75 (2019)

    ADS  Google Scholar 

  • Hulke, N., et al.: Variable Chaplygin gas cosmologies in \(f(R,T)\) gravity with particle creation. New Astron. 77, 101357 (2020)

    Google Scholar 

  • Jamil, M., Momeni, D., Raza, M., Myrzakulov, R.: Reconstruction of some cosmological models in \(f(R,T)\) cosmology. Eur. Phys. J. C 72, 1999 (2012)

    ADS  Google Scholar 

  • Jimenez, R., Loeb, A.: Constraining cosmological parameters based on relative galaxy ages. Astrophys. J. 573, 37 (2002)

    ADS  Google Scholar 

  • Kamenshchik, A., et al.: An alternative to quintessence. Phys. Lett. B 511, 265 (2001)

    ADS  MATH  Google Scholar 

  • Magaña, J., et al.: The Cardassian expansion revisited: constraints from updated Hubble parameter measurements and Type 1a supernova data. Mon. Not. R. Astron. Soc. 476, 1036–1049 (2018)

    ADS  Google Scholar 

  • Mishra, R.K., Chandra, R.: Cosmological models with \(G\rho \propto H^{2}\) and \(\Lambda \propto H^{2}\). Math. Educ. 38, 202 (2004)

    Google Scholar 

  • Mishra, R.K., Dua, H.: Bulk viscous string cosmological model in Saez-Ballester theory of gravity. Astrophys. Space Sci. 364, 195 (2019)

    ADS  MathSciNet  Google Scholar 

  • Mishra, R.K., et al.: String cosmological model from early deceleration to current acceleration phase with varying \(G\) and \(\Lambda \). Eur. Phys. J. Plus 127, 137 (2012)

    Google Scholar 

  • Mishra, R.K., et al.: Anisotropic viscous fluid cosmological models from deceleration to acceleration in string cosmology. Int. J. Theor. Phys. 52, 2546 (2013)

    MathSciNet  MATH  Google Scholar 

  • Mishra, R.K., et al.: Dark energy models in \(f(R,T)\) theory with variable deceleration parameter. Int. J. Theor. Phys. 55, 1241 (2016a)

    MathSciNet  MATH  Google Scholar 

  • Mishra, R.K., et al.: Cosmological models in alternative theory of gravity with Bilinear Deceleration Parameter. Astrophys. Space Sci. 361, 259 (2016b)

    ADS  MathSciNet  Google Scholar 

  • Mishra, R.K., et al.: A comparative study of cosmological models in alternative theory of gravity with LVDP & BVDP. Astrophys. Space Sci. 362, 140 (2017)

    ADS  MathSciNet  Google Scholar 

  • Mishra, R.K., Dua, H., Chand, A.: Bianchi-III cosmological model with BVDP in modified \(f(R,T)\) theory. Astrophys. Space Sci. 363, 112 (2018)

    ADS  MathSciNet  Google Scholar 

  • Mishra, B., Ray, P.P., Myrzakulov, R.: Bulk viscous embedded hybrid dark energy models. Eur. Phys. J. C 79, 34 (2019)

    ADS  Google Scholar 

  • Moresco, M.: Raising the bar: new constraints on the Hubble parameter with cosmic chronometersat \(z\sim 2\). Mon. Not. R. Astron. Soc. 450, L16–L20 (2015)

    ADS  Google Scholar 

  • Moresco, M., et al.: Improved constraints on the expansion rate of the universe upto \(z\sim 1.1\) from the spectroscopic evolution of cosmic chronometers. J. Cosmol. Astropart. Phys. 1208, 006 (2012)

    ADS  Google Scholar 

  • Moresco, M., et al.: A 6% measurements of the Hubble parameter at \(z\sim 0.5\): direct evidence of the epoch of cosmic re-acceleration. J. Cosmol. Astropart. Phys. 1605, 014 (2016)

    ADS  Google Scholar 

  • Murphy, G.L.: Big-Bang model without singularities. Phys. Rev. D 8, 4231 (1973)

    ADS  Google Scholar 

  • Nightingale, J.D.: Independent investigations concerning bulk viscosity in relativistic homogeneous isotropic cosmologies. Astrophys. J. 185, 105 (1973)

    ADS  MathSciNet  Google Scholar 

  • Nojiri, S., Odintsov, S.D.: Inhomogeneous equation of state of the universe: phantom era, future singularity, and crossing the phantom barrier. Phys. Rev. D 72, 023003 (2005)

    ADS  Google Scholar 

  • Oka, A., et al.: Simultaneous constraints on the growth of structure and cosmic expansion from the multipole power spectra of the SDSS. DR7 LRG sample. Mon. Not. R. Astron. Soc. 439, 2515–2530 (2014)

    ADS  Google Scholar 

  • Perlmutter, S., et al.: Measurements of \(\Omega \) and \(\Lambda \) from 42 high-redshift supernova. Astrophys. J. 517, 565 (1999)

    ADS  MATH  Google Scholar 

  • Ratra, B., Peebles, P.J.E.: Cosmological consequences of a rolling homogeneous scalar field. Phys. Rev. D 37, 3406 (1988)

    ADS  Google Scholar 

  • Ratsimbazafy, A.L., et al.: Age-dating Luminous Red Galaxies observed with the southern African large telescope. Mon. Not. R. Astron. Soc. 467, 3239–3254 (2017)

    ADS  Google Scholar 

  • Riess, A.G., et al.: Observational evidence from supernova for an accelerating universe and cosmological constant. Astrophys. J. 116, 1009 (1998)

    Google Scholar 

  • Riess, A.G., et al.: Type Ia supernova discoveries at z>1 from the Hubble Space Telescope: evidence for past deceleration and constraints on dark energy evolution. Astrophys. J. 607, 665 (2004)

    ADS  MATH  Google Scholar 

  • Scolnic, D.M., Jones, D.O., Rest, A., Pan, Y.C., Chornock, R., Foley, R.J., Huber, M.E., Kessler, R., Narayan, G., Riess, A.G., Rodney, S.: The complete light-curve sample of spectroscopically confirmed SNe Ia from Pan-STARRS1 and cosmological constraints from the combined pantheon sample. Astrophys. J. 859, 101 (2018)

    ADS  Google Scholar 

  • Sharif, M., Waseem, A.: Inhomogeneous perturbations and stability analysis of the Einstein static universe in \(f(R,T)\) gravity. Astrophys. Space Sci. 364, 221 (2019)

    ADS  MathSciNet  Google Scholar 

  • Spergel, D.N., et al.: First year Wilkinson Microwave Anisotropy probe (WMAP) observations: determination of cosmological parameters. Astrophys. J. Suppl. Ser. 148, 175–194 (2003)

    ADS  Google Scholar 

  • Stern, D., et al.: Cosmic chronometers: constraining the equation of state of dark energy. I: \(H(z)\) measurements. J. Cosmol. Astropart. Phys. 1002, 008 (2010)

    ADS  Google Scholar 

  • Wang, J., Meng, X.: Effects of new viscosity model on cosmological evolution. Mod. Phys. Lett. A 29, 1450009 (2014)

    ADS  MathSciNet  Google Scholar 

  • Wang, Y., et al.: The clustering of galaxies in the completed SDSS-III baryon oscillation spectroscopic survey: tomographic BAO analysis of DR12 combined in sample configuration space. Mon. Not. R. Astron. Soc. 469, 3762–3774 (2017)

    ADS  Google Scholar 

  • Xu, Y.D., Huang, Z.G., Zhai, X.H.: Generalised Chaplygin gas model with or without viscosity in the \(\omega -\omega ^{\prime }\) plane. Astrophys. Space Sci. 337, 493 (2012)

    ADS  Google Scholar 

  • Zhang, C., et al.: Four new observational \(H(z)\) data from luminous red galaxies in the Sloan Digital Sky Survey data release seven. Res. Astron. Astrophys. 14, 1221 (2014)

    ADS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the anonymous reviewer for his valuable suggestions and comments for the improvement of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Mishra.

Ethics declarations

Conflict of interest

The authors report no conflict of interest amongst each other or with the funding sources and will abide by ethical standards of this submission.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, R.K., Dua, H. Phase transition of cosmological model with statistical techniques. Astrophys Space Sci 365, 131 (2020). https://doi.org/10.1007/s10509-020-03843-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10509-020-03843-0

Keywords

Navigation