Skip to main content
Log in

Search for Candidate Objects with the Sunyaev–Zeldovich Effect on Planck Maps in the Neighborhood of RCR Catalog Radio Sources

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract

Millimeter- and submillimeter-wave maps are used to select potential candidate objects with the Sunyaev–Zeldovich effect in the vicinity of RCR (RATAN Cold Refined) radio sources. The properties of “hot” and “cold” spots in the right-ascension interval 2h ≤ RA ≤ 17h and the declination strip \({\text{De}}{{{\text{c}}}_{{2000}}} = 45^\circ .9' \pm 15'\) are studied. In the entire strip a total of 135 candidate objects with the Sunyaev–Zeldovich effect are found. A total of 86 objects are located within 7′ from RCR catalog sources. The effect shows up most conspicuously in the vicinity of 25 RCR sources. Clusters of galaxies or radio sources are found near the overwhelming majority of spots with the Sunyaev–Zeldovich effect. The distributions of radio spectral indices of the objects and the signal on microwave maps in the direction of radio sources are statistically analyzed. It is shown that when observed at microwave frequencies a number of objects are associated with sources with inverted spectra.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.

Similar content being viewed by others

Notes

  1. Hereinafter, we will call them “hot spots.”

  2. http://www.rssd.esa.int/Planck/.

  3. http://pla.esac.esa.int/.

  4. When constructing the radio source spectra we used all available flux information available via CATS (Verkhodanov et al., 2005b), Vizier (Ochsenbein et al., 2000) and NED (NASA/IPAC Extragalactic Database resources).

  5. The median spectral indices at 3.94 GHz are equal to Sp.Ind.3.94 = –0.77 and Sp.Ind.3.94 = –1.12 for the sources of the SS and USS groups, respectively. The fractions of SS and USS sources were found to be equal to 52% and 14% of all objects, respectively.

  6. The most distant radio galaxy and quasar among RCR sources have the redshifts of z = 4.514 (Kopylov et al., 2006) and z = 3.345, respectively.

  7. http://www.glesp.nbi.dk.

  8. A spot at 100 GHz must be “colder” than a spot at 143 Ghz.

  9. The full Table 1 is available at: http://www.sao.ru/hq/len/Cluster/Tabl_1/.

  10.  The amplitudes of most of the spots that we investigate on Planck maps do not exceed 4σ.

  11.  Its z-band magnitude is mz = 23.2, and this galaxy is not observed in other optical bands (the data of the NOAO Legasy Survey).

  12.  The sources for which no redshift z is listed are faint optical objects and in some cases the optical object cannot be detected at all.

  13.  They are marked by letters Pl in Table 1 (column (11)).

  14.  The full Table 2 is available at: http://www.sao.ru/hq/len/Cluster/Tabl_2/.

REFERENCES

  1. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, A1 (2014).

    Google Scholar 

  2. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, A20 (2014).

    Google Scholar 

  3. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 571, A28 (2014).

    Google Scholar 

  4. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 582, A28 (2015).

    Google Scholar 

  5. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, A26 (2016).

    Google Scholar 

  6. P. A. R. Ade et al. (Planck Collab.), Astron. and Astrophys. 594, A27 (2016).

    Google Scholar 

  7. Y. Akrami et al. (Planck Collab.), arXiv:1807.06205 (2018).

  8. P. Banerjee, T. Szabo, E. Pierpaoli, et al., New Astron. 58, 61 (2018).

    ADS  Google Scholar 

  9. E. Bertin and S. Arnouts, Astron. and Astrophys. Suppl. 117, 393 (1996).

    ADS  Google Scholar 

  10. T. Boch, P. Fernique, ASP Conf. Ser. 485, 277 (2014).

  11. F. Bonnarel, P. Fernique, O. Bienayme, et al., Astron. and Astrophys. Suppl. 143, 33 (2000).

    ADS  Google Scholar 

  12. J. Delabrouille, M. Betoule, J.-B. Melin, et al., Astron. and Astrophys. 553, A96 (2013).

    Google Scholar 

  13. A. G. Doroshkevich, O. B. Verkhodanov, P. D. Naselsky, et al., Intern. J. Mod. Phys. D 20, 1053 (2011).

    ADS  Google Scholar 

  14. N. Hurley-Walker, J. R. Callingham, P. J. Hancock, et al., Monthly Notices Royal Astron. Soc. 464, 1146 (2017).

    ADS  Google Scholar 

  15. H. T. Intema, P. Jagannathan, K. P. Mooley, D. A. Frail, Astron. and Astrophys. 598, A78 (2017).

    ADS  Google Scholar 

  16. R. R. Gal, P. A. A. Lopes, R. R. de Carvalho, et al., Astron. J. 137, 2981 (2009).

    ADS  Google Scholar 

  17. P. C. Gregory, W. K. Scott, K. Douglas, and J. J. Condon, Astrophys. J. Suppl. 103, 427 (1996).

    ADS  Google Scholar 

  18. L. I. Gurvits, K. I. Kellermann, and S. Frey, Astron. and Astrophys. 342, 378 (1999).

    ADS  Google Scholar 

  19. A. I. Kopylov, W. M. Goss, Y. N. Parijskij, et al., Astronomy Letters 32, 433 (2006).

    ADS  Google Scholar 

  20. W. M. Lane, W. D. Cotton, S. van Velzen, et al., Monthly Notices Royal Astron. Soc. 440, 327 (2014).

    ADS  Google Scholar 

  21. P. A. A. Lopes, R. R. de Carvalho, R. R. Gal, et al., Astron. J. 128, 1017 (2004).

    ADS  Google Scholar 

  22. E. K. Majorova, O. P. Zhelenkova, and A. V. Temirova Astrophysical Bulletin 70, 33 (2015).

    ADS  Google Scholar 

  23. F. Ochsenbein, P. Bauer, and J. Marcout, Astron. and Astrophys. Suppl. 143, 23 (2000).

    ADS  Google Scholar 

  24. M. Oguri, Monthly Notices Royal Astron. Soc. 444, 147 (2014).

    ADS  Google Scholar 

  25. Y. N. Parijskij, P. Thomasson, A. I. Kopylov, et al., Monthly Notices Royal Astron. Soc. 439, 2314 (2014).

    ADS  Google Scholar 

  26. Yu. N. Pariiskii and D. V. Korolkov, Itogi Nauki i Tekhniki. Seriia Astronomiia31 (1986) [in Russian].

  27. Yu. N. Parijskij, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 87, 1 (1991).

    ADS  Google Scholar 

  28. Yu. N. Parijskij, N. N. Bursov, N. M. Lipovka, et al., Astron. and Astrophys. Suppl. 98, 391 (1993).

    ADS  Google Scholar 

  29. A. G. Riess, S. Casertano, W. Yuan, et al., Astrophys. J. 855, 136 (2018).

    ADS  Google Scholar 

  30. E. S. Rykoff, E. Rozo, M. T. Busha, et al., Astrophys. J. 785, 104 (2014).

    ADS  Google Scholar 

  31. E. S. Rykoff, E. Rozo, D. Hollowood, et al., Astrophys. J. Suppl. 224, 1 (2016).

    Google Scholar 

  32. N. S. Soboleva, E. K. Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 65, 42 (2010).

    ADS  Google Scholar 

  33. Yu. V. Sotnikova, T. V. Mufaharov, E. K. Majorova, et al., Astrophysical Bulletin 74, 348 (2019).

    ADS  Google Scholar 

  34. R. A. Sunyaev and Y. B. Zeldovich, Monthly Notices Royal Astron. Soc. 190, 413 (1980).

    ADS  Google Scholar 

  35. R. A. Sunyaev and Y. B. Zeldovich, Comments Astrophysics Space Physics 4, 173 (1972).

    ADS  Google Scholar 

  36. T. Szabo, E. Pierpaoli, F. Dong, et al., Astrophys. J. 736, 21, (2011).

    ADS  Google Scholar 

  37. E. Tempel, T. Tuvikene, R. Kipper, and N. Libeskind, Astron. and Astrophys. 602, A100 (2017).

    ADS  Google Scholar 

  38. B. P. Venemans, H. J. A. Rottgering, G. K. Miley, et al., Astron. and Astrophys.¨ 461, 823 (2007).

    ADS  Google Scholar 

  39. O. V. Verkhodanov, ASP Conf. Ser. 125, 46 (1997).

  40. O. V. Verkhodanov and Yu. N. Parijskij, Radio Galaxies and Cosmology (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  41. O. V. Verkhodanov, A. G. Doroshkevich, P. D. Naselsky, et al., Bull. Spec. Astrophys. Obs. 58, 40 (2005).

    ADS  Google Scholar 

  42. O. V. Verkhodanov, B. L. Erukhimov, M. L. Monosov, et al., Bull. Spec. Astrophys. Obs. 36, 132 (1993).

    ADS  Google Scholar 

  43. O. V. Verkhodanov, E. K. Majorova, O. P. Zhelenkova, et al., Astrophysical Bulletin 70, 156 (2015).

    ADS  Google Scholar 

  44. O. V. Verkhodanov, E. K. Majorova, O. P. Zhelenkova, et al., Astronomy Letters, 41, 457 (2015).

    ADS  Google Scholar 

  45. O. V. Verkhodanov, E. K. Maiorova, O. P. Zhelenkova, et al., Astronomy Reports, 60, 630 (2016).

    ADS  Google Scholar 

  46. O. V. Verkhodanov, Ya. V. Naiden, V. N. Chernenkov, and N. V. Verkhodanova, Astrophysical Bulletin 69, 113 (2014).

    ADS  Google Scholar 

  47. O. V. Verkhodanov, Yu. N. Parijskij, and A. A. Starobinsky, Bull. Spec. Astrophys. Obs. 58, 5 (2005).

    ADS  Google Scholar 

  48. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Bull. Spec. Astrophys. Obs. 58, 118 (2005b).

    ADS  Google Scholar 

  49. O. V. Verkhodanov, S. A. Trushkin, H. Andernach, and V. N. Chernenkov, Data Science J. 8, 34 (2009).

    ADS  Google Scholar 

  50. O. V. Verkhodanov, N. V. Verkhodanova, O. S. Ulakhovich, et al., Astrophysical Bulletin 73, 1 (2018).

    ADS  Google Scholar 

  51. Z. L. Wen and J. L. Han, Astrophys. J. 807, 178 (2015).

    ADS  Google Scholar 

  52. Z. L. Wen, J. L. Han, and F. S. Liu, Astrophys. J. Suppl. 199, 34 (2012).

    ADS  Google Scholar 

  53. Ya. B. Zeldovich and R. A. Sunyaev, Astrophys. Sp. Sci. 4, 301 (1969).

    ADS  Google Scholar 

  54. O. P. Zhelenkova, E. K. Majorova Astrophysical Bulletin 73, 142 (2018).

    ADS  Google Scholar 

  55. O. P. Zhelenkova, N. S. Soboleva, E. K. Majorova, and A. V. Temirova, Astrophysical Bulletin 68, 26 (2013).

    ADS  Google Scholar 

  56. O. P. Zhelenkova, N. S. Soboleva, A. V. Temirova, and N. N. Bursov Astrophysical Bulletin 72, 150 (2017).

    ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to European Space Agency for providing open access to the results of observations and data reduction in Planck Legacy Archive. We used the CATS database of astronomical catalogs (Verkhodanov et al., 2005b, 2009) when reconstructing the radio spectra. This study also used the FADPS system for the processing of radio-astronomical data and GLESP scheme for analyzing extended radiation on the sphere.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. K. Majorova.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by A. Dambis

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Majorova, E.K., Verkhodanov, O.V. & Zhelenkova, O.P. Search for Candidate Objects with the Sunyaev–Zeldovich Effect on Planck Maps in the Neighborhood of RCR Catalog Radio Sources. Astrophys. Bull. 75, 77–92 (2020). https://doi.org/10.1134/S1990341320020091

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320020091

Keywords:

Navigation