Skip to main content
Log in

Contribution of a Non-Thermal Component to the X-Ray Emission of OB Stars

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—In the paper the possibility of the presence of a non-thermal component described by a power law spectrum in the X-ray spectra of OB stars is investigated. The low-resolution spectra of 101 OB stars obtained using the EPIC camera on the XMM satellite are analyzed. It is concluded that the contribution of the non-thermal component of X-ray emission can be significant and even determining for the stars similar to γ Cas. The inclusion of the non-thermal component in the model X-ray spectra reduces the temperature of the thermal components of the X-ray plasma of such stars down to typical for OB stars values. The contribution of the non-thermal component can also be significant for binary stars with colliding stellar winds and for Of?p stars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

Notes

  1. www.cosmos.esa.int/web/xmm-newton.

  2. Usually (see, for example, Naze et al. (2014)) when modeling the spectra of OB stars, this parameter is fixed and assumed to be equal to 1 (solar abundance). We did not fix this parameter, since the element abundances in the X-ray-emitting plasma may differ from the solar.

REFERENCES

  1. E. Anders, N. Grevesse, Geochim. Cosmochim. Acta 53, 197 (1989).

    Article  ADS  Google Scholar 

  2. J. Babel, T. Montmerle, Astron. and Astrophys. 323, 121 (1997).

    ADS  Google Scholar 

  3. P. Benaglia, ASP Conf. Ser. 422, 111 (2010).

  4. W. Chen, R. White, Astrophys. J. 366, 512 (1991).

    Article  ADS  Google Scholar 

  5. M. De Becker, F. Raucq, Astron. and Astrophys. 558, id. A28 (2013).

  6. M. De Becker, M. V. del Valle, G. E. Romero, et al., Monthly Notices Royal Astron. Soc. 471, 4452 (2017).

    Article  ADS  Google Scholar 

  7. S. B. Gudennavar, S. G. Bubbly, K. Preethi, and J. Murthy, Astrophys. J. Suppl. 199, 8 (2012).

    Article  ADS  Google Scholar 

  8. P. Leto, C. Trigilio, L. Oskinova, et al., Monthly Notices Royal Astron. Soc. 467, 2820 (2017).

    Google Scholar 

  9. P. Leto, C. Trigilio, L. M. Oskinova, et al., MonthlyNotices Royal Astron. Soc. 476, 562 (2018).

    Google Scholar 

  10. D. A. Liedahl, A. L. Osterheld, and W. H. Goldstein, Astrophys. J. 438, L115 (1995).

    Article  ADS  Google Scholar 

  11. K. Mewe, E. H. B. M. Gronenschild, and G. H. J. van der Oord, Astron. and Astrophys. Suppl. 62, 197 (1985).

    ADS  Google Scholar 

  12. K. Mewe, J. R. Lemen, and G. H. J. van der Oord, Astron. and Astrophys. Suppl. 65, 511 (1986).

    ADS  Google Scholar 

  13. R. Morrison, D. McCammon, Astrophys. J. 270, 119 (1983).

    Article  ADS  Google Scholar 

  14. Y. Naze, V. Petit, M. Rinbran, et al., Astrophys. J. Suppl. 215, 10 (2014).

    Article  Google Scholar 

  15. A. M. T. Pollock, Astron. and Astrophys. 171, 135 (1987).

    ADS  Google Scholar 

  16. A. M. T. Pollock, Proc. IAU Symp. 143, 102 (1991).

  17. J. Robrade, arXiv:1601.04959v1 (2016).

  18. E. Ryspaeva, A. Kholtygin, Research Astron. Astrophys. 18, 104 (2018).

    Article  ADS  Google Scholar 

  19. E. Ryspaeva, A. Kholtygin, Research Astron. Astrophys. 19, 120 (2019).

    Article  ADS  Google Scholar 

  20. E. Ryspaeva, A. Kholtygin, Research Astron. Astrophys. 19, 2019 (in press).

  21. R. K. Smith, N. S. Brickhouse, D. A. Liedahl, and C. Raymond, Astrophys. J. 556, L91 (2001).

    Article  ADS  Google Scholar 

  22. M. A. Smith, R. Lopes de Oliveira, and C. Motch, Advanced Space Research, 58, 782 (2016).

    Article  ADS  Google Scholar 

  23. J. R. Taylor, An Introduction to Error Analysis (Univ. Sci. Books, Mill Valley, 1982).

    Google Scholar 

  24. A. ud-Doula, S. Owocky, R. Townsend, et al., Monthly Notices Royal Astron. Soc. 441, 3600 (2014).

  25. R. L. White, Astrophys. J. 289, 698 (1985).

    Article  ADS  Google Scholar 

  26. J. Wilms, A. Allen, and R. McCray, Astrophys. J. 542, 914 (2000).

    Article  ADS  Google Scholar 

  27. S. Zhekov, F. Palla, Monthly Notices Royal Astron. Soc. 382, 1124 (2007).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors express their gratitude to the reviewer for comments that improves the text of the article.

Funding

This research was supported by the Russian Foundation for Basic Research, grant no. 19-02-00311 А.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. F. Kholtygin.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by T. Sokolova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryspaeva, E.B., Kholtygin, A.F. Contribution of a Non-Thermal Component to the X-Ray Emission of OB Stars. Astrophys. Bull. 75, 127–138 (2020). https://doi.org/10.1134/S199034132002011X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S199034132002011X

Keywords:

Navigation