Skip to main content
Log in

Distance Measurements to Parent Galaxies of SNIa by the Tip of the Red-Giant Branch

  • Published:
Astrophysical Bulletin Aims and scope Submit manuscript

Abstract—We use the archival data obtained with the Hubble space telescope to measure distances by the tip of the red-giant branch (TRGB) method to SNIa parent galaxies. Our sample consists of four galaxies: NGC2841, NGC4496A, NGC4535, and NGC4527. For three of them, we were able to determine only the lower bounds of the distance. For the galaxy NGC4527, we estimated the TRGB distance modulus: (m − M)0 = 30m.56 ± 0m.09. Combining our measurements with the published data, we compared the supernova distance moduli using the MLCS2k2 method and the host galaxies with the TRGB method. SNIa distance moduli show systematically higher value at 0m.15–0m.18 relative to the scale of the TRGB distances. This corresponds to overestimation of the luminosity of supernovae with the MLCS2k2 method. We estimated the luminosity of supernovae at the brightness maximum as MV = −19m.33 ± 0m.03 which allows one to accept the following Hubble constant: H0 = 70.4 ± 1.0 km s−1 Mpc−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. A.1.

Similar content being viewed by others

Notes

  1. http://leda.univ-lyon1.fr/.

  2. https://archive.stsci.edu/.

  3. http://edd.ifa.hawaii.edu/.

  4. https://ned.ipac.caltech.edu/.

  5. http://heracles.astro.berkeley.edu/oldsndb.

  6. http://edd.ifa.hawaii.edu/database.

REFERENCES

  1. A. Antipova, D. Makarov, and L. Makarova, ASP Conf.Ser. 510, 203 (2017).

  2. E. Aubourg, S. Bailey, J. E. Bautista, et al., Phys. Rev. D 92 (12), 123516 (2015).

    Article  ADS  Google Scholar 

  3. C. L. Bennett, D. Larson, J. L. Weiland, et al., Astrophys. J. Suppl. 208, 20 (2013).

    Article  Google Scholar 

  4. C. R. Burns, E. Parent, M. M. Phillips, et al., Astrophys. J. 869, 56 (2018).

    Article  ADS  Google Scholar 

  5. A. E. Dolphin, Publ. Astron. Soc. Pacific 112, 1383 (2000).

  6. W. L. Freedman, B. F. Madore, D. Hatt, et al., Astrophys. J. 882 (1), 34 (2019).

    Article  ADS  Google Scholar 

  7. W. L. Freedman, B. F. Madore, V. Scowcroft, et al., Astrophys. J. 758, 24 (2012).

    Article  ADS  Google Scholar 

  8. J. Guy, P. Astier, S. Baumont, et al., Astron. and Astrophys. 466, 11 (2007).

    Article  ADS  Google Scholar 

  9. E. M. L. Humphreys, M. J. Reid, J. M. Moran, et al., Astrophys. J. 775, 13 (2013).

    Article  ADS  Google Scholar 

  10. B. A. Jacobs, L. Rizzi, R. B. Tully, et al., Astron. J. 138, 332 (2009).

    Article  ADS  Google Scholar 

  11. I. S. Jang and M. G. Lee, Astrophys. J. 836, 74 (2017a).

    Article  ADS  Google Scholar 

  12. I. S. Jang and M. G. Lee, Astrophys. J. 835, 28 (2017b).

    Article  ADS  Google Scholar 

  13. S. Jha, A. G. Riess, and R. P. Kirshner, Astrophys. J.659, 122 (2007).

    Article  ADS  Google Scholar 

  14. M. G. Lee, I. S. Jang, R. Beaton, et al., Astrophys. J. 835, L27 (2017).

    Article  ADS  Google Scholar 

  15. D. Makarov, L. Makarova, L. Rizzi, et al., Astron. J. 132, 2729 (2006).

    Article  ADS  Google Scholar 

  16. D. Makarov, P. Prugniel, N. Terekhova, et al., Astron. and Astrophys. 570, A13 (2014).

    Article  ADS  Google Scholar 

  17. Planck Collaboration, et al., Astron. and Astrophys. 596, A107 (2016).

  18. B. Reindl, G. A. Tammann, A. Sandage, and A. Saha, Astrophys. J. 624, 532 (2005).

    Article  ADS  Google Scholar 

  19. A. G. Riess, L. Macri, S. Casertano, et al., Astrophys. J. 730, 119 (2011).

    Article  ADS  Google Scholar 

  20. A. G. Riess, L. M. Macri, S. L. Hoffmann, et al., Astrophys. J. 826, 56 (2016).

    Article  ADS  Google Scholar 

  21. L. Rizzi, R. B. Tully, D. Makarov, et al., Astrophys. J. 661, 815 (2007).

    Article  ADS  Google Scholar 

  22. E. F. Schlafly and D. P. Finkbeiner, Astrophys. J. 737, 103 (2011).

  23. J. M. Silverman, R. J. Foley, A. V. Filippenko, et al., Monthly Notices Royal Astron. Soc. 425, 1789 (2012).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to N.A. Tikhonov for critical comments and discussion of our work. In the paper, we used the TRGB distance moduli from the Extragalactic Distance Database (EDD) (Jacobs et al., 2009). We also made use of the HyperLeda database (Makarov et al., 2014). For the stellar photometry of galaxies, we used the data from the archive of the Hubble telescope (Hubble Legacy Archive, https://hla.stsci.edu/).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Antipova.

Ethics declarations

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Translated by N. Oborina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Antipova, A.V., Makarov, D.I. & Makarova, L.N. Distance Measurements to Parent Galaxies of SNIa by the Tip of the Red-Giant Branch. Astrophys. Bull. 75, 93–102 (2020). https://doi.org/10.1134/S1990341320020030

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1990341320020030

Keywords:

Navigation