Skip to main content
Log in

Seed oil storage in three contrasted legume species: implications for oil improvement

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

Cellular comparisons on three legume species indicate oil body size is factor in mediating oil content. Key transcription factors and oleosins determining seed oil content were identified in somatic embryos of Medicago.

Abstract

Legume seeds provide a significant oil alternative to meat fat needs. Increasing demand for oil nutrition in the context of sustainable crop production has stimulated the exploration of legume seed oil storage regulation. This study investigated the cellular characteristics of seed oil storage using three legume species i.e. Medicago truncatula, Glycine max and Pongamia pinnata representing different oil/protein ratios, and then examined in vitro approaches for assessing strategies in enhancing seed oil storage. A greater range of oil body sizes was in higher oil/protein content species, with highest species having the largest oil bodies; and the smallest oil body size being relatively similar across species, suggesting that the arrangement of oil body size may be factor in mediating oil content. The expression of four key transcription factors i.e. LEC1, L1L, FUS3 and ABI3, and four oleosin genes in determining seed oil content was compared in vivo and in vitro using somatic embryos in Medicago, along with cellular evidence of oil bodies in somatic embryos, indicating that somatic embryos may be suitable models for rapid assessment of seed oil enhancement. This study revealed the cellular characteristics for legume seed oil storage with different nutritional compositions, and identified the associated molecular basis for boosting seed oil storage via regulating oil body size. In addition, somatic embryogenesis may be an effective system for examining oil production by modifying the expression of candidate genes prior to in vivo testing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

TAG:

Triacylglycerol

DAA:

Days after anthesis

TEM:

Transmission electron microscopy

PD:

Proportional difference

SE:

Somatic embryogenesis

References

  • Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with Image. J Biophotonics Int 11:36–42

    Google Scholar 

  • Bala M, Nag TN, Kumar S, Vyas M, Kumar A, Bhogal NS (2011) Proximate composition and fatty acid profile of Pongamia pinnata, a potential biodiesel crop. J Am Oil Chem Soc 88:559–562

    CAS  Google Scholar 

  • Bellaloui N, Bruns HA, Gillen AM, Abbas HK, Zablotowicz RM, Mengistu A, Paris RL (2010) Soybean seed protein, oil, fatty acids, and mineral composition as influenced by soybean-corn rotation. Agric Sci 1:102–109

    CAS  Google Scholar 

  • Benedito VA, Torres-Jerez I, Murray JD, Andriankaja A, Allen S, Kakar K, Wandrey M, Verdier J, Zuber H, Ott T, Moreau S, Niebel A, Frickey T, Weiller G, He J, Dai X, Zhao P, Tang Y, Udvardi M (2008) A gene expression atlas of the model legume Medicago truncatula. Plant J 55:504–513

    CAS  PubMed  Google Scholar 

  • Cannon SB, Sterck L, Rombauts S, Sato S, Cheung F, Gouzy J, Wang X, Mudge J, Vasdewani J, Schiex T, Schiex T, Spannagl M, Monaghan E, Nicholson C, Humphray SJ, Schoof H, Mayer KFX, Rogers J, Quétier F, Oldroyd GE, Debellé F, Cook DR, Retzel EF, Roe BA, Town CD, Tabata S, Van de Peer Y, Young ND (2006) Legume genome evolution viewed through the Medicago truncatula and Lotus japonicus genomes. Proc Natl Acad Sci USA 103:14959–14964

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemente TE, Cahoon EB (2009) Soybean oil: genetic approaches for modification of functionality and total content. Plant Physiol 151:1030–1040

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cook DR (1999) Medicago truncatula? A model in the making! Curr. Opin Plant Biology 2:301–304

    CAS  Google Scholar 

  • Crowe AJ, Abenes M, Plant A, Moloney MM (2000) The seed-specific transactivator, ABI3, induces oleosin gene expression. Plant Sci 151:171–181

    CAS  PubMed  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    CAS  PubMed  PubMed Central  Google Scholar 

  • Djemel N, Guedon D, Lechevalier A, Salon C, Miquel M, Prosperi JM, Rochat C, Boutin JP (2005) Development and composition of the seeds of nine genotypes of the Medicago truncatula species complex. Plant Physiol Biochem 43:557–566

    CAS  PubMed  Google Scholar 

  • Dodeman VL, Ducreux G, Kreis M (1997) Zygotic embryogenesis versus somatic embryogenesis. J Exp Botany 48:1493–1509

    CAS  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg. Legume diversity and evolution in a phylogenetic context. Plant Physiol 131:900–910

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallardo K, Firnhaber C, Zuber H, Héricher D, Belghazi M, Henry C, Küster H, Thompson R (2007) A combined proteome and transcriptome analysis of developing Medicago truncatula seeds. Evidence for metabolic specialization of maternal and filial tissues. Mol Cell Proteomics 6:2165–2179

    CAS  PubMed  Google Scholar 

  • Gallardo K, Jolivet P, Vernoud V, Canonge M, Larré C, Chardot T (2016) Storage cells-oil and protein bodies. In: Rose RJ (ed) Molecular cell biology of the growth and differentiation of plant cells. CRC Press Boca Raton, Florida, pp 362–381

    Google Scholar 

  • Graham PH, Vance CP (2003) Legumes: importance and constraints to greater use. Plant Physiol 131:872–877

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guillon F, Champ MJ (2002) Carbohydrate fractions of legumes: uses in human nutrition and potential for health. Br J Nutr 88:293–306

    Google Scholar 

  • Horn PJ, Benning C (2016) The plant lipidome in human and environmental health. Science 353:1228–1232

    CAS  PubMed  Google Scholar 

  • Huang AH (2018) Plant lipid droplets and their associated proteins: potential for rapid advances. Plant Physiol 176:1894–1918

    PubMed  Google Scholar 

  • Jolivet P, Boulard C, Bellamy A, Larré C, Barre M, Rogniaux H, d’Andréa S, Chardot T, Nesi N (2009) Protein composition of oil bodies from mature brassica napus seeds. Proteomics 9:3268–3284

    CAS  PubMed  Google Scholar 

  • Kurdyukov S, Song Y, Sheahan MB, Rose RJ (2014) Transcriptional regulation of early embryo development in the model legume Medicago truncatula. Plant Cell Rep 33:349–362

    CAS  PubMed  Google Scholar 

  • Kurdyukov S, Song Y, Tiew TW, Wang XD, Nolan KE, Rose RJ (2015) Protocols for obtaining zygotic and somatic embryos for studying the regulation of early embryo development in the model legume Medicago truncatula. J Vis Exp 100:e52635

    Google Scholar 

  • Kwong RW, Bui AQ, Lee H, Kwong LW, Fischer RL, Goldberg RB, Harada JJ (2003) LEAFY COTYLEDON1-LIKE defines a class of regulators essential for embryo development. Plant Cell 15:5–18

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Dai X, Liu T, Zhao PX (2012) LegumeIP: an integrative database for comparative genomics and transcriptomics of model legumes. Nucleic Acids Res 40:1221–1229

    Google Scholar 

  • Lott JNA, Buttrose MS (1978) Globoids in protein bodies of legume seed cotyledons. Aust J Plant Physiol 5:89–111

    CAS  Google Scholar 

  • Manan S, Chen B, She G, Wan X, Zhao J (2016) Transport and transcriptional regulation of oil production in plants. Crit Rev Biotechnol 37:641–655

    PubMed  Google Scholar 

  • Mochida K, Yoshida T, Sakurai T, Yamaguchi-Shinozaki K, Shinozaki K, Tran LS (2010) LegumeTFDB: an integrative database of Glycine max, Lotus japonicus and Medicago truncatula transcription factors. Bioinformatics 26:290–291

    CAS  PubMed  Google Scholar 

  • Mu J, Tan H, Zheng Q, Fu F, Liang Y, Zhang J, Yang X, Wang T, Chong K, Wang XJ, Zuo J (2008) LEAFY COTYLEDON1 is a key regulator of fatty acid biosynthesis in Arabidopsis. Plant Physiol 148:1042–1054

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nolan KE, Rose RJ (2010) Plant regeneration-somatic embryogenesis. In: Davey MR, Anthony P (eds) Plant cell culture essential methods. Wiley, Chichester UK, pp 39–59

    Google Scholar 

  • Nolan KE, Song Y, Liao S, Saeed NA, Zhang X, Rose RJ (2014) An unusual abscisic acid and gibberellic acid synergism increases somatic embryogenesis, facilitates its genetic analysis and improves transformation in Medicago truncatula. PLoS ONE 9:e99908

    PubMed  PubMed Central  Google Scholar 

  • Pande M, Goli M, Bellaloui N (2014) Effect of foliar and soil application of potassium fertilizer on soybean seed protein, oil, fatty acids, and minerals. Am J Plant Sci 5:541–548

    Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real time RT-PCR. Nucleic Acids Res 29:e45

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roesler K, Shen B, Bermudez E, Li C, Hunt J, Damude HG, Ripp KG, Everard JD, Booth JR, Castaneda L, Feng L (2016) An improved variant of soybean type 1 diacylglycerol acyltransferase increases the oil content and decreases the soluble carbohydrate content of soybeans. Plant Physiol 171:878–893

    PubMed  PubMed Central  Google Scholar 

  • Rose RJ (2008) Medicago truncatula as a model for understanding plant interactions with other organisms, plant development and stress biology: past, present and future. Funct Plant Biol 35:253–264

    PubMed  Google Scholar 

  • Rose RJ, Nolan KE, Bicego L (1999) The development of the highly regenerable seed line Jemalong 2HA for transformation of medicago truncatula-implications for regenerability via somatic embryogenesis. J Plant Physiol 155:788–791

    CAS  Google Scholar 

  • Rose RJ, Wang XD, Nolan KE, Rolfe BG (2006) Root meristems in Medicago truncatula tissue culture arise from vascular-derived procambial like cells in a process regulated by ethylene. J Exp Bot 57:2227–2235

    CAS  PubMed  Google Scholar 

  • Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W, Hyten DL, Song Q, Thelen JJ, Cheng J, Xu D, Hellsten U, May GD, Yu Y, Sakurai T, Umezawa T, Bhattacharyya MK, Sandhu D, Valliyodan B, Lindquist E, Peto M, Grant D, Shu S, Goodstein D, Barry K, Futrell-Griggs M, Abernathy B, Du J, Tian Z, Zhu L, Gill N, Joshi T, Libault M, Sethuraman A, Zhang XC, Shinozaki K, Nguyen HT, Wing RA, Cregan P, Specht J, Grimwood J, Rokhsar D, Stacey G, Shoemaker RC, Jackson SA (2010) Genome sequence of the palaeopolyploid soybean. Nature 463:178–183

    CAS  PubMed  Google Scholar 

  • Scott PT, Pregelj L, Chen N, Hadler JS, Djordjevic MA, Gresshoff PM (2008) Pongamia pinnata: an untapped resource for the biofuels industry of the future. Bioenerg Res 1:2–11

    Google Scholar 

  • Shimada TL, Hara-Nishimura I (2010) Oil-body-membrane proteins and their physiological functions in plants. Biol Pharm Bull 33:360–363

    CAS  PubMed  Google Scholar 

  • Siloto RM, Findlay K, Lopez-Villalobos A, Yeung EC, Nykiforuk CL, Moloney MM (2006) The accumulation of oleosins determines the size of seed oil bodies in Arabidopsis. Plant Cell 18:1961–1974

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, Y. (2013) Genetic regulation of embryo development and formation of seed storage products in the legume model Medicago truncatula, The University of Newcastle, Australia, PhD thesis.

  • Song Y, He L, Wang XD, Smith N, Wheeler S, Garg ML, Rose RJ (2017a) Regulation of carbon partitioning in the seed of the model legume Medicago truncatula and Medicago orbicularis: A comparative approach. Front Plant Sci 8:2070

    PubMed  PubMed Central  Google Scholar 

  • Song Y, Nolan KE, Rose J, R. (2013) Stable transformation of Medicago truncatula cv Jemalong for gene analysis. In: Rose RJ (ed) Legume genomics, Methods and protocols. Methods in Molecular Biology, vol 1069. Humana Press Springer, New York, pp 203–214

    Google Scholar 

  • Song Y, Wang XD, Rose RJ (2017b) Oil body biogenesis and biotechnology in legume seeds. Plant Cell Report 36:1519–1532

    CAS  Google Scholar 

  • Stagnari F, Maggio A, Galieni A, Pisante M (2017) Multiple benefits of legumes for agriculture sustainability: an overview. Chem Biol Technol Agric 4:2

    Google Scholar 

  • Stone SL, Kwong LW, Yee KM, Pelletier J, Lepiniec L, Fischer RL, Goldberg RB, Harada JJ (2001) LEAFY COTYLEDON2 encodes a B3 domain transcription factor that induces embryo development. Proc Natl Acad Sci USA 98:11806–11811

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A, Zhou S, Gentzbittel L, Childs K, Yandell M, Gundlach H, Mayer K, Schwartz D, Town C (2014) An improved genome release (version Mt4.0) for the model legume Medicago truncatula. BMC Genomics 15:312

    PubMed  PubMed Central  Google Scholar 

  • Thompson R, Burstin J, Gallardo K (2009) Post-genomics studies of developmental processes in legume seeds. Plant Physiol 151:1023–1029

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tzen JTC, Cao YZ, Laurent P, Ratnayake C, Huang AHC (1993) Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol 101:267–276

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhercke T, El TA, Shrestha P, Zhou XR, Singh SP, Petrie JR (2013) Synergistic effect of WRI1 and DGAT1 coexpression on triacylglycerol biosynthesis in plants. FEBS Lett 587:364–369

    CAS  PubMed  Google Scholar 

  • Varshney RK, Song C, Saxena RK, Azam S, Yu S, Sharpe AG, Cannon S, Baek J, Rosen BD, Tarán B, Millan T, Zhang X, Ramsay LD, Iwata A, Wang Y, Nelson W, Farmer AD, Gaur PM, Soderlund C, Penmetsa RV, Xu C, Bharti AK, He W, Winter P, Zhao S, Hane JK, Carrasquilla-Garcia N, Condie JA, Upadhyaya HD, Luo MC, Thudi M, Gowda CLL, Singh NP, Lichtenzveig J, Gali KK, Rubio J, Nadarajan N, Dolezel J, Bansal KC, Xu X, Edwards D, Zhang G, Kahl G, Gil J, Singh KB, Datta SK, Jackson SA, Wang J, Cook DR (2013) Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat Biotechnol 31:240–246

    CAS  PubMed  Google Scholar 

  • Verdier J, Benedito VA, Udvardi MK (2012) The Medicago truncatula Gene Expression Atlas (MtGEA): a tool for legume seed biology and biotechnology. In: Agrawal G, Rakwal R (eds) Seed development: OMICS Technologies toward Improvement of seed quality and crop yield. Springer Science Business Media, Dordrecht

    Google Scholar 

  • Verdier J, Dessaint F, Schneider C, Abirached-Darmency MA (2013) A combined histology and transcriptome analysis unravels novel questions on Medicago truncatula seed coat. J Exp Bot 64:459–470

    CAS  PubMed  Google Scholar 

  • Verdier J, Kakar K, Gallardo K, Le Signor C, Aubert G, Schlereth A, Verdier J, Kakar K, Gallardo K, Signor CL, Aubert G, Schlereth A, Town CD, Udvardi MK, Thompson RD (2008) Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling. Plant Mol Biol 67:567–580

    CAS  PubMed  Google Scholar 

  • Wahlroos T, Soukka J, Denesyuk A, Wahlroos R, Korpela T, Kilby NJ (2003) Oleosin expression and trafficking during oil body biogenesis in tobacco leaf cells. Genesis 35:125–132

    CAS  PubMed  Google Scholar 

  • Wang XD, Song Y, SheahanGarg MBML, Rose RJ (2012) From embryo sac to oil and protein bodies: embryo development in the model legume Medicago truncatula. New Phytol 193:327–338

    CAS  PubMed  Google Scholar 

  • Wei WH, Chen B, Yan XH, Wang L, Zhang HF, Cheng JP, Zhou XA, Sha AH, Shen H (2008) Identification of differentially expressed genes in soybean seeds differing in oil content. Plant Sci 175:663–673

    CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgement

The work is financially supported by National Key R&D Program of China (No. 2017YFD0301307), which was initially supported by an Australian Research Council (ARC) Grant CEO348212. XS are thankful to the China Scholarship Council for financial support for 2 yr study in Australia. We thank Prof. Peter Gresshoff for supplying the Pongamia seed.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ray J. Rose or Youhong Song.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest for the research.

Additional information

Communicated by H. Peng.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

11738_2020_3130_MOESM1_ESM.jpg

Supplementary file1 Supplementary Fig. S1 Alignments of seven oleosin amino acid sequences in Medicago truncatula. The red line indicated conserved oleosin superfamily domain (JPG 4842 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, X., Zhu, Y., Chen, X. et al. Seed oil storage in three contrasted legume species: implications for oil improvement. Acta Physiol Plant 42, 141 (2020). https://doi.org/10.1007/s11738-020-03130-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03130-z

Keywords

Navigation