Skip to main content
Log in

Dispersion Laws, Nonlinear Solitary Waves, and Modeling of Kernels of Integro-Differential Equations Describing Perturbations in Hydrodynamic-Type Media With Strong Spatial Dispersion

  • NONLINEAR ACOUSTICS
  • Published:
Acoustical Physics Aims and scope Submit manuscript

An integro-differential equation simulating a medium with strong spatial dispersion and hydrodynamic-type nonlinearities (the Whitham equation) is considered. A method is proposed for constructing the kernel of the integral term that makes it possible to qualitatively take into account the specifics of the dispersion laws of linear waves in media with spatial dispersion. The case where the kernel contains two independent parameters characterizing its amplitude and width is considered in detail. The dispersion laws of linear waves, as well as solutions in the form of solitary waves with limiting and small amplitudes, are obtained and analyzed. In particular, it is shown that the appropriate choice of parameters makes it possible to obtain the value of the tapering angle at the peak of a solitary wave with limiting amplitude on the surface of a fluid layer; this value is equal to the Stokes angle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. M. B. Vinogradova, O. V. Rudenko, and A. P. Sukhorukov, The Theory of Waves, 2nd ed. (Nauka, Moscow, 1990) [in Russian].

    MATH  Google Scholar 

  2. O.V. Rudenko and S. I. Soluyan, Nonlinear Acoustic Theory (Nauka, Moscow, 1975) [in Russian].

    Google Scholar 

  3. V. A. Krasil’nikov and V. V. Krylov, Introduction to Physical Acoustics (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  4. K. A. Naugol’nykh and L. A. Ostrovskii, Nonlinear Wave Processes in Acoustics (Nauka, Moscow, 1990) [in Russian].

    Google Scholar 

  5. V. M. Agranovich and V. L. Ginzburg, Crystal Optics by Considering Spatial Dispersion and Exiton Theory (Nauka, Moscow, 1960) [in Russian].

    Google Scholar 

  6. E. A. Turov, Material Equations for Electrodynamics (Nauka, Moscow, 1983) [in Russian].

    Google Scholar 

  7. P. L. Bhatnagar, Nonlinear Waves in One-Dimensional Dispersive Systems (Clarendon Press, 1979; Mir, Moscow, 1983) [in Russian].

  8. V. I. Karpman, Nonlenear Waves in Dispersing Mediums (Nauka, Moscow, 1973) [in Russian].

    Google Scholar 

  9. A. G. Bagdoev, V. I. Erofeev, and A. V. Shekoyan, Linear and Nonlinear Waves in Dispersing Continuous Mediums (Fizmatlit, Moscow, 2009) [in Russian].

    Google Scholar 

  10. G. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1974; Mir, Moscow, 1977).

  11. N. M. Ryskin and D. I. Trubetskov, Nonlinear Waves (Lenand, Moscow, 2017) [in Russian]

    Google Scholar 

  12. S. A. Gabov, Introduction into Nonlinear Wave Theory (MSU, Moscow, 1988) [in Russian].

    Google Scholar 

  13. M. Ya. Kel’bert and I. A. Sazonov, Pulse Propagation in Liquids (Nauka, Moscow, 1991) [in Russian].

    MATH  Google Scholar 

  14. O. V. Rudenko, S. I. Soluyan, and R. V. Khokhlov, Akust. Zh. 20 (3), 449 (1974).

    Google Scholar 

  15. O. V. Rudenko, Acoust. Phys. 60 (4), 398 (2014).

    Article  ADS  Google Scholar 

  16. E. G. Lobanova, S. V. Lobanov, and V. A. Khokhlova, Acoust. Phys. 60 (4), 387 (2014).

    Article  ADS  Google Scholar 

  17. A. P. Sarvazyan, O. V. Rudenko, S. D. Svanson, J. B. Fowlkes, and S. Y. Emelianov, Ultrasound Med. Biol. 24 (9), 1419 (1998).

    Article  Google Scholar 

  18. S. S. Kashcheeva, O. A. Sapozhnikov, V. A. Khokhlova, M. A. Averk’yu, and L. A. Kram, Acoust. Phys. 46 (2), 170 (2000).

    Article  ADS  Google Scholar 

  19. O. A. Vasil’eva, E. A. Lapshin, and O. V. Rudenko, Acoust. Phys. 65 (1), 23 (2019).

    Article  ADS  Google Scholar 

  20. A. L. Polyakova, S. I. Soluyan, and R. V. Khokhlov, Akust. Zh. 8 (1), 107 (1962).

    Google Scholar 

  21. S. I. Soluyan and R. V. Khokhlov, Akust. Zh. 8 (2), 220 (1962).

    Google Scholar 

  22. O. V. Rudenko and S. I. Soluyan, Akust. Zh., No. 3, 421 (1972).

  23. Yu. A. Kobelev and L. A. Ostrovskii, in Nonlinear Acoustics. Theoretical and Experimental Researches (Gorky, 1980), p. 143 [in Russian].

    Google Scholar 

  24. V. L. Ginzburg, Akust. Zh. 1 (1), 31 (1955).

    Google Scholar 

  25. M. O’Donnel, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 63 (6), 1935 (1978).

    Article  ADS  Google Scholar 

  26. M. O’Donnel, E. T. Jaynes, and J. G. Miller, J. Acoust. Soc. Am. 69 (3), 696 (1981).

    Article  ADS  Google Scholar 

  27. A. A. Karabutov, N. B. Podymova, and Yu. G. Sokolovskaya, Acoust. Phys. 65 (2), 158 (2019).

    Article  ADS  Google Scholar 

  28. V. G. Andreev, O. V. Rudenko, O. A. Sapozhnikov, and V. A. Khokhlova, Vestn. Mosk. Univ., Ser. 3: Fiz. Astron., No. 3, 58 (1985).

  29. S. A. Gabov, Dokl. Akad. Nauk SSSR, Ser. Mat. 242 (5), 993 (1978).

    Google Scholar 

  30. N. O. Tomilina, Vestn. Mosk. Univ., Ser. 3: Fiz., Astron. 32 (2), 14 (1991).

    MathSciNet  Google Scholar 

  31. V. M. Eleonskii, V. G. Korolev, and N. E. Kulagin, Izv. Vyssh. Uchebn. Zaved., Prikl. Nelineinaya Din. 1 (3), 72 (1993).

    Google Scholar 

  32. D. Moldabayev, H. Kalisc, and D. Dutykh, Phys. D: Nonlinear Phenom. 309, 99 (2015). arXiv:1410.8299v1

  33. P. I. Naumkin and I. A. Shishmarev, Nonlinear Nonlocal Equations in the Theory of Waves (Am. Math. Soc., 1994).

  34. Yu. L. Klimontovich, Statistical Theory of Nonequilibrium Processes in Plasma (Nauka, Moscow, 1964) [in Russian].

    Google Scholar 

  35. V. M. Hur and M. A. Johnson, Stud. Appl. Math. 134, 120 (2015). arXiv:1312.1579v2

    Article  MathSciNet  Google Scholar 

  36. M. A. Johnson and J. D. Wright, Stud. Appl. Math. 144, 102 (2020). arXiv:1807.11469

  37. A. Stefanov and J. D. Wright, J. Dyn. Differ. Equations 32, 85 (2020). arXiv:1802.10040v1

  38. V. M. Hur and A. K. Pandey, Proc. R. Soc. A 473, 20170153 (2017). arXiv:1702.08708v1

  39. F. Remonato and H. Kalisch, Phys. D: Nonlinear Phenom. 343 (15), 51 (2017). arXiv:1604.08324v1

  40. M. Ehrnström and E. Wahlen, Ann. Inst. Henri Poincare, Sect. C 36 (6), 1603 (2019). arXiv:1602.05384v1

  41. M. N. Arnesen, arXiv:1602.00250v3

  42. A. D. Polyanin and V. F. Zaitsev, Nonlinear Equations for Mathematical Physics (Fizmatlit, Moscow, 2002) [in Russian].

    Google Scholar 

  43. A. D. Polyanin, V. F. Zaitsev, and A. I. Zhurov, Methods for Solving Nonlinear Equations in Mathematical Physics and Mechanics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  44. A. T. Il’ichev, Solitary Waves in Hydromechanic Models (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  45. N. A. Kudryashov, Methods for Nonlinear Mathematical Physics (National Research Nuclear University MEPhI (Moscow Engineering Physics Institute), Moscow, 2008) [in Russian].

  46. E. A. Pamyatnykh and A. V. Ursulov, Acoust. Phys. 58 (2), 160 (2012).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Ursulov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ursulov, A.V. Dispersion Laws, Nonlinear Solitary Waves, and Modeling of Kernels of Integro-Differential Equations Describing Perturbations in Hydrodynamic-Type Media With Strong Spatial Dispersion. Acoust. Phys. 66, 375–383 (2020). https://doi.org/10.1134/S1063771020040107

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1063771020040107

Keywords:

Navigation