Skip to main content
Log in

Shift-plethystic trees and Rogers–Ramanujan identities

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

By studying non-commutative series in an infinite alphabet, we introduce shift-plethystic trees and a class of integer compositions as new combinatorial models for the Rogers–Ramanujan identities. We prove that the language associated to shift-plethystic trees can be expressed as a non-commutative generalization of the Rogers–Ramanujan continued fraction. By specializing the non-commutative series to q-series, we obtain new combinatorial interpretations of the Rogers-Ramanujan identities in terms of signed integer compositions. We introduce the operation of shift-plethysm on non-commutative series and use this to obtain interesting enumerative identities involving compositions and partitions related to Rogers–Ramanujan identities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Andrews, G.E.: Identities in combinatorics. II. A \(q\)-analog of the Lagrange inversion theorem. Proc. Am. Math. Soc. 53(1), 240–245 (1975)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Eriksson, K.: Integer Partitions. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  3. Berenstein, A., Retakh, V.: Noncommutative Catalan numbers. Ann. Comb. 23(3), 527–547 (2019)

    Article  MathSciNet  Google Scholar 

  4. Bressoud, D.M., Zeilberger, D.: A short Rogers–Ramanujan bijection. Discrete Math. 38(2–3), 313–315 (1982)

    Article  MathSciNet  Google Scholar 

  5. Garsia, A.M.: A q-analogue of the Lagrange inversion formula. Houston J. Math 7(2), 205–237 (1981)

    MathSciNet  MATH  Google Scholar 

  6. Garsia, A.M., Milne, S.C.: A Rogers–Ramanujan bijection. J. Comb. Theory Series A 31(3), 289–339 (1981)

    Article  MathSciNet  Google Scholar 

  7. Garsia, A.M., Remmel, J.: A novel form of \(q\)-Lagrange inversion. Houston J. Math 12, 503–523 (1986)

    MathSciNet  MATH  Google Scholar 

  8. Gessel, I.: Generating functions and the enumeration of sequences. Massachusetts Institute of Technology, Dept. of Mathematics, Ph.D. thesis (1977)

  9. Gessel, I.: A noncommutative generalization and \(q\)-analog of the Lagrange inversion formula. Trans. Am. Math. Soc. 257(2), 455–482 (1980)

    MathSciNet  MATH  Google Scholar 

  10. Gessel, I., Stanton, D.: Applications of \(q\)-Lagrange inversion to basic hypergeometric series. Trans. Am. Math. Soc. 277(1), 173–201 (1983)

    MathSciNet  MATH  Google Scholar 

  11. Joyal, A.: Une théorie combinatoire des séries formelles. Adv. Math. 42(1), 1–82 (1981)

    Article  MathSciNet  Google Scholar 

  12. Krattenthaler, C.: Operator methods and Lagrange inversion: a unified approach to Lagrangeagrange formulas. Trans. Am. Math. Soc. 305(2), 431–465 (1988)

    Article  Google Scholar 

  13. MacMahon, P.A.: Combinatory Analysis, vol. ii. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  14. Méndez, M., Nava, O.: Colored species, c-monoids, and plethysm, I. J. Comb. Theory Ser. A 64(1), 102–129 (1993)

    Article  MathSciNet  Google Scholar 

  15. Pak, I., Postnikov, A., Retakh, V.: Noncommutative Lagrange theorem and inversion polynomials. https://math.mit.edu/~apost/papers/noncom.pdf. (1995)

  16. Polishchuk, A., Positselski, L.: Quadratic Algebras, vol. 37. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

  17. Priddy, S.B.: Koszul resolutions. Trans. Am. Math. Soc. 152(1), 39–60 (1970)

    Article  MathSciNet  Google Scholar 

  18. Rogers, L.J.: Second memoir on the expansion of certain infinite products. Proc. Lond. Math. Soc. 1(1), 318–343 (1894)

    Article  MathSciNet  Google Scholar 

  19. Rogers, L.J.: On two theorems of combinatory analysis and some allied identities. Proc. Lond. Math. Soc. s2–16(1), 315–336 (1917)

    Article  Google Scholar 

  20. Schur, I.: Ein beitrag zur additiven zahlentheorie und zur theorie der kettenbrüche. S. B. Preuss. Akad. Wiss. Phys. Math. Klasse 42, 302–321 (1917)

    MATH  Google Scholar 

  21. Sills, Andrew V.: An invitation to the Rogers-Ramanujan identities, Chapman and Hall/CRC, (2017)

  22. Stanley, R.P.: Enumerative Combinatorics. Cambridge University Press, Cambridge (2018). https://doi.org/10.1017/CBO9780511609589

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The author is grateful to the referee for his careful reading and for calling our attention to references [3, 15] which consider non-commutative versions of the Rogers–Ramanujan continued fraction. In particular, [15, Theorem 3.3.2] gives an explicit formula for (in our notation) the continued fraction \({\mathscr {A}}(z,q)\) as a quotient of q-series. This gives a novel expression for the generating function \(\frac{{\mathscr {C}}^{(1)}(z,q)}{{\mathscr {C}}^{(1)}(zq,z)}\). These methods could help in finding explicit formulas for \({\mathscr {C}}^{(1)}(z,q)\), and more generally for \({\mathscr {C}}^{(m)}(z,q)\), an interesting problem for future research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel A. Méndez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez, M.A. Shift-plethystic trees and Rogers–Ramanujan identities. Ramanujan J 55, 943–964 (2021). https://doi.org/10.1007/s11139-020-00285-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00285-8

Keywords

Mathematics Subject Classification

Navigation