Skip to main content
Log in

Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

The gut microbiota has been identified as a target of toxic metals and a potentially crucial mediator of the bioavailability and toxicity of these metals. In this study, we show that aluminum (Al) exposure, even at low dose, affected the growth of representative strains from the human intestine via pure culture experiments. In vitro, Lactobacillus plantarum CCFM639 could bind Al on its cell surface as shown by electron microscopy and energy dispersive X-ray analysis. The potential of L. plantarum CCFM639 to reverse changes in human intestine microbiota induced by low-dose dietary Al exposure was investigated using an in vitro colonic fermentation model. Batch fermenters were inoculated with fresh stool samples from healthy adult donors and supplemented with 86 mg/L Al and/or 109 CFU of L. plantarum CCFM639. Al exposure significantly increased the relative abundances of Bacteroidetes (Prevotella), Proteobacteria (Escherichia), Actinobacteria (Collinsella), Euryarchaeota (Methanobrevibacter), and Verrucomicrobiaceae and decreased Firmicutes (Streptococcus, Roseburia, Ruminococcus, Dialister, Coprobacillus). Some changes were reversed by the inclusion of L. plantarum CCFM639. Alterations in gut microbiota induced by Al and L. plantarum CCFM639 inevitably led to changes in metabolite levels. The short-chain fatty acid (SCFAs) contents were reduced after Al exposure, but L. plantarum CCFM639 could elevate their levels. SCFAs had positive correlations with beneficial bacteria, such as Dialister, Streptococcus, Roseburia, and negative correlations with Erwinia, Escherichia, and Serratia. Therefore, dietary Al exposure altered the composition and structure of the human gut microbiota, and this was partially mitigated by L. plantarum CCFM639. This probiotic supplementation is potentially a promising and safe approach to alleviate the harmful effects of dietary Al exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359. https://doi.org/10.1126/science.1124234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rosenfeld CS (2017) Gut dysbiosis in animals due to environmental chemical exposures. Front Cell Infect Microbiol 7:396. https://doi.org/10.3389/fcimb.2017.00396

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Backhed F, Ley RE, Sonnenburg JL, Peterson DA, Gordon JI (2005) Host-bacterial mutualism in the human intestine. Science 307(5717):1915–1920. https://doi.org/10.1126/science.1104816

    Article  CAS  PubMed  Google Scholar 

  4. Power SE, O'Toole PW, Stanton C, Ross RP, Fitzgerald GF (2014) Intestinal microbiota, diet and health. Br J Nutr 111(3):387–402. https://doi.org/10.1017/S0007114513002560

    Article  CAS  PubMed  Google Scholar 

  5. Oluwaseun Alegbeleye O, Sant’Ana AS (2020) Understanding the public health burden of unconventional produce-associated enteropathogens. Curr Opin Food Sci 32:37–44. https://doi.org/10.1016/j.cofs.2020.01.008

    Article  Google Scholar 

  6. Rooks MG, Garrett WS (2016) Gut microbiota, metabolites and host immunity. Nat Rev Immunol 16(6):341–352. https://doi.org/10.1038/nri.2016.42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Aguilar F, Autrup H, Barlow S, Castle L, Crebelli R, Dekant W, Engel KH, Gontard N, Gott D, Grilli S, Gürtler R, Larsen JC, Leclercq C, Leblanc JC, Malcata FX, Mennes W, Milana MR, Pratt I, Rietjens I, Tobback P, Toldrá F (2008) Scientific opinion of the panel on food additives, flavourings, processing aids and food contact materials on a request from European commission on safety of aluminium from dietary intake. The EFSA Journal 754:1–34. https://doi.org/10.2903/j.efsa.2008.754

    Article  Google Scholar 

  8. Vignal C, Desreumaux P, Body-Malapel M (2016) Gut: an underestimated target organ for aluminum. Morphologie 100(329):75–84. https://doi.org/10.1016/j.morpho.2016.01.003

    Article  CAS  PubMed  Google Scholar 

  9. Tinkov AA, Gritsenko VA, Skalnaya MG, Cherkasov SV, Aaseth J, Skalny AV (2018) Gut as a target for cadmium toxicity. Environ Pollut 235:429–434. https://doi.org/10.1016/j.envpol.2017.12.114

    Article  CAS  PubMed  Google Scholar 

  10. Zhai Q, Li T, Yu L, Xiao Y, Feng S, Wu J, Zhao J, Zhang H, Chen W (2017) Effects of subchronic oral toxic metal exposure on the intestinal microbiota of mice. Sci Bull 110(4):501–513. https://doi.org/10.1016/j.scib.2017.01.031

    Article  CAS  Google Scholar 

  11. Breton J, Daniel C, Dewulf J, Pothion S, Froux N, Sauty M, Thomas P, Pot B, Foligné B (2013) Gut microbiota limits heavy metals burden caused by chronic oral exposure. Toxicol Lett 222(2):132–138. https://doi.org/10.1016/j.toxlet.2013.07.021

    Article  CAS  PubMed  Google Scholar 

  12. Claus SP, Ellero SL, Berger B, Krause L, Bruttin A, Molina J, Paris A, Want EJ, de Waziers I, Cloarec O, Richards SE, Wang Y, Dumas ME, Ross A, Rezzi S, Kochhar S, Van Bladeren P, Lindon JC, Holmes E, Nicholson JK (2011) Colonization-induced host-gut microbial metabolic interaction. MBio 2(2):e00271–e00210. https://doi.org/10.1128/mBio.00271-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) The international scientific association for probiotics and prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

    Article  PubMed  Google Scholar 

  14. Behera SS, Panda SK (2020) Ethnic and industrial probiotic foods and beverages: efficacy and acceptance. Curr Opin Food Sci 32:29–36. https://doi.org/10.1016/j.cofs.2020.01.006

    Article  Google Scholar 

  15. Roobab U, Batool Z, Manzoor M, Shabbir MA, Khan MR, Aadil R (2020) Sources, formulations, advanced delivery and health benefits of probiotics. Curr Opin Food Sci 32:17–28. https://doi.org/10.1016/j.cofs.2020.01.003

    Article  Google Scholar 

  16. Zucko J, Starcevic A, Diminic J, Oros D, Mortazavian AM, Putnik P (2020) Probiotic - friend or foe? Curr Opin Food Sci 32:45–49. https://doi.org/10.1016/j.cofs.2020.01.007

    Article  Google Scholar 

  17. Sarfraz F, Farooq U, Shafi A, Hayat Z, Akram K, Rehman HU (2019) Hypolipidaemic effects of synbiotic yoghurt in rabbits. Int J Dairy Technol 72(4):545–550. https://doi.org/10.1111/1471-0307.12618

    Article  CAS  Google Scholar 

  18. Lee CS, Lee SH, Kim SH (2020) Bone-protective effects of Lactobacillus plantarum B719-fermented milk product. Int J Dairy Technol. https://doi.org/10.1111/1471-0307.12701

  19. Khorshidian N, Yousefi M, Shadnoush M, Siadat SD, Mohammadi M, Mortazavian AM (2020) Using probiotics for mitigation of acrylamide in food products: a mini review. Curr Opin Food Sci 32:67–75. https://doi.org/10.1016/j.cofs.2020.01.011

    Article  Google Scholar 

  20. Zhai Q, Tian F, Wang G, Zhao J, Liu X, Cross K, Zhang H, Narbad A, Chen W (2016) The cadmium binding characteristics of a lactic acid bacterium in aqueous solutions and its application for removal of cadmium from fruit and vegetable juices. RSC Adv 6(8):5990–5998. https://doi.org/10.1039/C5RA24843D

    Article  CAS  Google Scholar 

  21. Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W (2016) Potential of Lactobacillus plantarum CCFM639 in protecting against aluminum toxicity mediated by intestinal barrier function and oxidative stress. Nutrients 8(12):783. https://doi.org/10.3390/nu8120783

    Article  CAS  PubMed Central  Google Scholar 

  22. Larsen N, Vogensen FK, Gobel RJ, Michaelsen KF, Forssten SD, Lahtinen SJ, Jakobsen M (2013) Effect of Lactobacillus salivarius Ls-33 on fecal microbiota in obese adolescents. Clin Nutr 32(6):935–940. https://doi.org/10.1016/j.clnu.2013.02.007

    Article  CAS  PubMed  Google Scholar 

  23. Veiga P, Pons N, Agrawal A, Oozeer R, Guyonnet D, Brazeilles R, Faurie JM, van Hylckama Vlieg JE, Houghton LA, Whorwell PJ, Ehrlich SD, Kennedy SP (2014) Changes of the human gut microbiome induced by a fermented milk product. Sci Rep 4:6328. https://doi.org/10.1038/srep06328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Yu L, Qiao N, Li T, Yu R, Zhai Q, Tian F, Zhao J, Zhang H, Chen W (2019) Dietary supplementation with probiotics regulates gut microbiota structure and function in Nile tilapia exposed to aluminum. PeerJ 7:e6963. https://doi.org/10.7717/peerj.6963

    Article  PubMed  PubMed Central  Google Scholar 

  25. Kristek A, Wiese M, Heuer P, Kosik O, Schär MY, Soycan G, Alsharif S, Kuhnle G, Walton G, Spencer J (2019) Oat bran, but not its isolated bioactive β-glucans or polyphenols, have a bifidogenic effect in an in vitro fermentation model of the gut microbiota. Brit J Nutr 121(5):549–559. https://doi.org/10.1017/S0007114518003501

    Article  CAS  PubMed  Google Scholar 

  26. Payne AN, Zihler A, Chassard C, Lacroix C (2012) Advances and perspectives in in vitro human gut fermentation modeling. Trends Biotechnol 30(1):17–25. https://doi.org/10.1016/j.tibtech.2011.06.011

    Article  CAS  PubMed  Google Scholar 

  27. Likotrafiti E, Tuohy KM, Gibson GR, Rastall RA (2014) An in vitro study of the effect of probiotics, prebiotics and synbiotics on the elderly faecal microbiota. Anaerobe 27:50–55. https://doi.org/10.1016/j.anaerobe.2014.03.009

    Article  CAS  PubMed  Google Scholar 

  28. Gietl E, Mengerink W, Jd S, Gibson G (2012) Factors involved in the in vitro fermentability of short carbohydrates in static faecal batch cultures. Int J Carbohyd Chem 2012(1):1–10. https://doi.org/10.1155/2012/197809

    Article  CAS  Google Scholar 

  29. Lesmes U, Beards EJ, Gibson GR, Tuohy KM, Shimoni E (2008) Effects of resistant starch type III polymorphs on human colon microbiota and short chain fatty acids in human gut models. J Agric Food Chem 56(13):5415–5421. https://doi.org/10.1021/jf800284d

    Article  CAS  PubMed  Google Scholar 

  30. Yu L, Zhai Q, Liu X, Wang G, Zhang Q, Zhao J, Narbad A, Zhang H, Tian F, Chen W (2016) Lactobacillus plantarum CCFM639 alleviates aluminium toxicity. Appl Microbiol Biotechnol 100(4):1891–1900. https://doi.org/10.1007/s00253-015-7135-7

    Article  CAS  PubMed  Google Scholar 

  31. Parmanand BA, Kellingray L, Le Gall G, Basit AW, Fairweather-Tait S, Narbad A (2019) A decrease in iron availability to human gut microbiome reduces the growth of potentially pathogenic gut bacteria; an in vitro colonic fermentation study. J Nutr Biochem 67:20–27. https://doi.org/10.1016/j.jnutbio.2019.01.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Zhai Q, Yu L, Li T, Zhu J, Zhang C, Zhao J, Zhang H, Chen W (2016) Effect of dietary probiotic supplementation on intestinal microbiota and physiological conditions of Nile tilapia (Oreochromis niloticus) under waterborne cadmium exposure. Anton Leeuw Int J G 110(4):501–513. https://doi.org/10.1007/s10482-016-0819-x

    Article  CAS  Google Scholar 

  33. Granato D, Putnik P, Kovačević DB, Santos JS, Calado V, Rocha RS, Cruz AGD, Jarvis B, Rodionova OY, Pomerantsev A (2018) Trends in chemometrics: food authentication, microbiology, and effects of processing. Compr Rev Food Sci F 17(3):663–677. https://doi.org/10.1111/1541-4337.12341

    Article  Google Scholar 

  34. Yu L, Zhai Q, Tian F, Liu X, Wang G, Zhao J, Zhang H, Narbad A, Chen W (2017) Lactobacillus plantarum CCFM639 can prevent aluminium-induced neural injuries and abnormal behaviour in mice. J Funct Foods 30:142–150. https://doi.org/10.1016/j.jff.2016.12.041

    Article  CAS  Google Scholar 

  35. Pina RG, Cervantes C (1996) Microbial interactions with aluminium. Biometals 9(3):311–316. https://doi.org/10.1007/Bf00817932

    Article  CAS  PubMed  Google Scholar 

  36. Zhou L, Tan Y, Huang L, Fortin C, Campbell PGC (2018) Aluminum effects on marine phytoplankton: implications for a revised Iron hypothesis (Iron-aluminum hypothesis). Biogeochemistry 139(2):123–137. https://doi.org/10.1007/s10533-018-0458-6

    Article  CAS  Google Scholar 

  37. Williams CF, Walton GE, Jiang L, Plummer S, Garaiova I, Gibson GR (2015) Comparative analysis of intestinal tract models. Annu Rev Food Sci Technol 6:329–350. https://doi.org/10.1146/annurev-food-022814-015429

    Article  CAS  PubMed  Google Scholar 

  38. Macfarlane GT, Gibson GR, Cummings JH (1992) Comparison of fermentation reactions in different regions of the human colon. J Appl Bacteriol 72(1):57–64. https://doi.org/10.1111/j.1365-2672.1992.tb04882.x

    Article  CAS  PubMed  Google Scholar 

  39. Boureau H, Hartmann L, Karjalainen T, Rowland I, Wilkinson MHF (2000) Models to study colonisation and colonisation resistance. Microb Ecol Health Dis 12(2):247–258. https://doi.org/10.1080/08910600050216246

    Article  Google Scholar 

  40. Beards E, Tuohy K, Gibson G (2010) Bacterial, SCFA and gas profiles of a range of food ingredients following in vitro fermentation by human colonic microbiota. Anaerobe 16(4):420–425. https://doi.org/10.1016/j.anaerobe.2010.05.006

    Article  CAS  PubMed  Google Scholar 

  41. Qin C, Gong L, Zhang X, Wang Y, Wang Y, Wang B, Li Y, Li W (2018) Effect of Saccharomyces boulardii and Bacillus subtilis B10 on gut microbiota modulation in broilers. Anim Nutr 4(4):358–366. https://doi.org/10.1016/j.aninu.2018.03.004

    Article  PubMed  PubMed Central  Google Scholar 

  42. Wu GF, Xiao XP, Feng PY, Xie FQ, Yu ZS, Yuan WZ, Liu P, Li XK (2017) Gut remediation: a potential approach to reducing chromium accumulation using Lactobacillus plantarum TW1-1. Sci Rep 7(1):15000. https://doi.org/10.1038/s41598-017-15216-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Litvak Y, Byndloss MX, Tsolis RM, Baumler AJ (2017) Dysbiotic Proteobacteria expansion: a microbial signature of epithelial dysfunction. Curr Opin Microbiol 39:1–6. https://doi.org/10.1016/j.mib.2017.07.003

    Article  CAS  PubMed  Google Scholar 

  44. Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13(9):R79. https://doi.org/10.1186/gb-2012-13-9-r79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Torres J, Hu J, Seki A, Eisele C, Nair N, Huang R, Tarassishin L, Jharap B, Cote-Daigneault J, Mao Q, Mogno I, Britton GJ, Uzzan M, Chen CL, Kornbluth A, George J, Legnani P, Maser E, Loudon H, Stone J, Dubinsky M, Faith JJ, Clemente JC, Mehandru S, Colombel JF, Peter I (2019) Infants born to mothers with IBD present with altered gut microbiome that transfers abnormalities of the adaptive immune system to germ-free mice. Gut 0:1–10. https://doi.org/10.1136/gutjnl-2018-317855

  46. Zeng MY, Inohara N, Nunez G (2017) Mechanisms of inflammation-driven bacterial dysbiosis in the gut. Mucosal Immunol 10(1):18–26. https://doi.org/10.1038/mi.2016.75

    Article  CAS  PubMed  Google Scholar 

  47. Veiga P, Gallini CA, Beal C, Michaud M, Delaney ML, Dubois A, Khlebnikov A, Je VHV, Punit S, Glickman JN (2010) Bifidobacterium animalis subsp. lactis fermented milk product reduces inflammation by altering a niche for colitogenic microbes. Proc Natl Acad Sci U S A 107(42):18132–18137. https://doi.org/10.1073/pnas.1011737107

    Article  PubMed  PubMed Central  Google Scholar 

  48. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci U S A 114(23):5994–5999. https://doi.org/10.1073/pnas.1703546114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hager CL, Isham N, Schrom KP, Chandra J, McCormick T, Miyagi M, Ghannoum MA (2019) Effects of a novel probiotic combination on pathogenic bacterial-fungal polymicrobial biofilms. mBio 10(2):e00338-19. https://doi.org/10.1128/mBio.00338-19

    Article  PubMed  PubMed Central  Google Scholar 

  50. Volkmann ER (2017) Intestinal microbiome in scleroderma: recent progress. Curr Opin Rheumatol 29(6):553–560. https://doi.org/10.1097/BOR.0000000000000429

    Article  CAS  PubMed  Google Scholar 

  51. de Chambrun GP, Body-Malapel M, Frey-Wagner I, Djouina M, Deknuydt F, Atrott K, Esquerre N, Altare F, Neut C, Arrieta MC, Kanneganti TD, Rogler G, Colombel JF, Cortot A, Desreumaux P, Vignal C (2014) Aluminum enhances inflammation and decreases mucosal healing in experimental colitis in mice. Mucosal Immunol 7(3):589–601. https://doi.org/10.1038/mi.2013.78

    Article  CAS  Google Scholar 

  52. Jiang Q, He X, Zou Y, Ding Y, Li H, Chen H (2018) Altered gut microbiome promotes proteinuria in mice induced by adriamycin. AMB Express 8(1):31. https://doi.org/10.1186/s13568-018-0558-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chen J, Wright K, Davis JM, Jeraldo P, Marietta EV, Murray J, Nelson H, Matteson EL, Taneja V (2016) An expansion of rare lineage intestinal microbes characterizes rheumatoid arthritis. Genome Med 8(1):43. https://doi.org/10.1186/s13073-016-0299-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wang H, Li Y, Feng X, Li Y, Wang W, Qiu C, Xu J, Yang Z, Li Z, Zhou Q, Yao K, Wang H, Li Y, Li D, Dai W, Zheng Y (2016) Dysfunctional gut microbiota and relative co-abundance network in infantile eczema. Gut Pathog 8:36. https://doi.org/10.1186/s13099-016-0118-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kamada N, Seo SU, Chen GY, Nunez G (2013) Role of the gut microbiota in immunity and inflammatory disease. Nat Rev Immunol 13(5):321–335. https://doi.org/10.1038/nri3430

    Article  CAS  PubMed  Google Scholar 

  56. Jackson MA, Jeffery IB, Beaumont M, Bell JT, Clark AG, Ley RE, O'Toole PW, Spector TD, Steves CJ (2016) Signatures of early frailty in the gut microbiota. Genome Med 8(1):8. https://doi.org/10.1186/s13073-016-0262-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wang M, Wan J, Rong H, He F, Wang H, Zhou J, Cai C, Wang Y, Xu R, Yin Z, Zhou W (2019) Alterations in gut glutamate metabolism associated with changes in gut microbiota composition in children with autism spectrum disorder. mSystems 4(1):e00321-18. https://doi.org/10.1128/mSystems.00321-18

    Article  PubMed  PubMed Central  Google Scholar 

  58. Moreno-Perez D, Bressa C, Bailen M, Hamed-Bousdar S, Naclerio F, Carmona M, Perez M, Gonzalez-Soltero R, Montalvo-Lominchar MG, Carabana C, Larrosa M (2018) Effect of a protein supplement on the gut microbiota of endurance athletes: a randomized, controlled, double-blind pilot study. Nutrients 10(3):337. https://doi.org/10.3390/nu10030337

    Article  CAS  PubMed Central  Google Scholar 

  59. Fernández J, Redondo-Blanco S, Gutiérrez-del-Río I, Miguélez EM, Villar CJ, Lombó F (2016) Colon microbiota fermentation of dietary prebiotics towards short-chain fatty acids and their roles as anti-inflammatory and antitumour agents: a review. J Funct Foods 25:511–522. https://doi.org/10.1016/j.jff.2016.06.032

    Article  CAS  Google Scholar 

  60. Dinh DM, Volpe GE, Duffalo C, Bhalchandra S, Tai AK, Kane AV, Wanke CA, Ward HD (2015) Intestinal microbiota, microbial translocation, and systemic inflammation in chronic HIV infection. J Infect Dis 211(1):19–27. https://doi.org/10.1093/infdis/jiu409

    Article  CAS  PubMed  Google Scholar 

  61. Zhao L, Zhang F, Ding X, Wu G, Lam YY, Wang X, Fu H, Xue X, Lu C, Ma J, Yu L, Xu C, Ren Z, Xu Y, Xu S, Shen H, Zhu X, Shi Y, Shen Q, Dong W, Liu R, Ling Y, Zeng Y, Wang X, Zhang Q, Wang J, Wang L, Wu Y, Zeng B, Wei H, Zhang M, Peng Y, Zhang C (2018) Gut bacteria selectively promoted by dietary fibers alleviate type 2 diabetes. Science 359(6380):1151–1156. https://doi.org/10.1126/science.aao5774

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Kathryn Cross for electron microscopy analysis. We also thank Bhavika A. Parmanand who helped in the colonic fermentation study.

Funding

This work was supported by the Natural Science Foundation of Jiangsu Province (BK20180603), National Natural Science Foundation of China Key Program (31772090, 31820103010, 31530056), the Postdoctoral Science Foundation of China (2018M642166), the General Financial Grant from the Jiangsu Postdoctoral Science Foundation (2018K016A), the Self-determined Research Program of Jiangnan University (JUSRP11847), BBSRC Newton Fund Joint Centre Award, the National First-Class Discipline Program of Food Science and Technology (JUFSTR20180102), Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, and BBSRC Institute Strategic Program Grant (BB/R012490/1, BBS/E/F/000PR10356).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Qixiao Zhai, Wei Chen, and Arjan Narbad. Data curation: Leilei Yu, Hui Duan, and Shi Cen. Funding acquisition: Fengwei Tian, Qixiao Zhai, Wei Chen, and Arjan Narbad. Investigation, Leilei Yu and Qixiao Zhai; Methodology, Leilei Yu, Melinda Mayer, and Gwénaëlle Le Gall. Project administration: Lee Kellingray, Melinda Mayer, and Arjan Narbad. Supervision, Fengwei Tian, Jianxin Zhao, and Hao Zhang. Writing: original draft, Leilei Yu, and Hui Duan. Writing–review and editing: Leilei Yu, Hui Duan, Melinda Mayer, and Arjan Narbad.

Corresponding author

Correspondence to Qixiao Zhai.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Duan, H., Kellingray, L. et al. Lactobacillus plantarum-Mediated Regulation of Dietary Aluminum Induces Changes in the Human Gut Microbiota: an In Vitro Colonic Fermentation Study. Probiotics & Antimicro. Prot. 13, 398–412 (2021). https://doi.org/10.1007/s12602-020-09677-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-020-09677-0

Keywords

Navigation