Skip to main content

Advertisement

Log in

Exploration of Direct-Ink-Write 3D Printing in Space: Droplet Dynamics and Patterns Formation in Microgravity

  • Original Article
  • Published:
Microgravity Science and Technology Aims and scope Submit manuscript

Abstract

As a simple, fast and effective 3D printing method, direct-ink-writing (DIW) has potential applications in repairing the circuit board in orbit, printing the wearable devices for the astronaut, and producing the solar cells for the energy supply in space. To expand the DIW technology to space, we designed the colloidal material box (CMB) as the prototype printer of DIW and verified its applicability in the Chinese SJ-10 satellite. The colloidal suspensions was adopted as a diluted ink model to investigate two key processes of DIW under microgravity environment: manipulation of the droplet and formation of the patterns. We have showed the dynamics of the droplet, which would determine the size of the features, could be controlled through tuning the wettability of the needles and the solid surface. Compared to the ground, the “coffee ring” effect was weakened for the drying patterns because of strong interfacial effect under weightless conditions. We have found that fast evaporation could assist for fabricating more uniform and ordered structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bag, M., Jiang, Z., Renna, L.A., Jeong, S.P., Rotello, V.M., Venkataraman, D.: Rapid combinatorial screening of inkjet-printed alkyl-ammonium cations in perovskite solar cells. Mater. Lett. 164, 472–475 (2016)

    Article  Google Scholar 

  • Bhardwaj, R., Fang, X., Somasundaran, P., Attinger, D.: Self-assembly of colloidal particles from evaporating droplets: role of DLVO interactions and proposition of a phase diagram. Langmuir 26(11), 7833–7842 (2010)

    Article  Google Scholar 

  • Cowley, A., Perrin, J., Meurisse, A., Micallef, A., Fateri, M., Rinaldo, L., Bamsey, N., Sperl, M.: Effects of variable gravity conditions on additive manufacture by fused filament fabrication using polylactic acid thermoplastic filament. Addit. Manuf. 28, 814–820 (2019)

    Google Scholar 

  • Cox, W.R., Chen, T., Hayes, D.J.: Micro-optics fabrication by ink-jet printers. Opt. Photonics News 12(6), 32–35 (2001)

    Article  Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Capillary flow as the cause of ring stains from dried liquid drops. Nature 389(6653), 827–829 (1997)

    Article  Google Scholar 

  • Deegan, R.D., Bakajin, O., Dupont, T.F., Huber, G., Nagel, S.R., Witten, T.A.: Contact line deposits in an evaporating drop. Phys. Rev. E 62, 756–765 (2000)

    Article  Google Scholar 

  • Diana, A., Castillo, M., Brutin, D., Steinberg, T.: Sessile Drop Wettability in Normal and Reduced Gravity. Microgravity Sci. Technol. 24(3), 195–202 (2012)

    Article  Google Scholar 

  • Dreyer, M., Delgado, A., Path, H.-J.: Capillary Rise of Liquid between Parallel Plates under Microgravity. J. Colloid Interf. Sci. 163(1), 158–168 (1994)

    Article  Google Scholar 

  • Fateri, M., Kaouk, A., Cowley, A., Siarov, S., Palou, M.V., González, F.G., Marchant, R., Cristoforetti, S., Sperl, M.: Feasibility study on additive manufacturing of recyclable objects for space applications. Addit. Manuf. 24, 400–404 (2018)

    Google Scholar 

  • Fateri, M., Pitikaris, S., Sperl, M.: Investigation on wetting and melting behavior of lunar regolith simulant for additive manufacturing application. Microgravity Sci. Technol. 31(2), 161–167 (2019)

    Article  Google Scholar 

  • Gao, Y.X., Li, H.Y., Liu, J.: Direct writing of flexible electronics through room temperature liquid metal ink. PLoS One 7(9), e45485 (2012)

  • Gebhardt, A.: Understanding additive manufacturing: rapid prototyping, rapid tooling, rapid manufacturing. Hanser, Munich (2011)

    Book  Google Scholar 

  • Guo, N., Leu, M.C.: Additive manufacturing: technology, applications and research needs. Front. Mech. Eng. 8(3), 215–243 (2013)

    Article  Google Scholar 

  • Hill, C.: Flexible Sensor Development for Astronaut Crew Health Monitoring. (2019). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20200000034.pdf. [online]

  • Hon, K., Li, L., Hutchings, I.: Direct writing technology—Advances and developments. CIRP Ann. 57(2), 601–620 (2008)

    Article  Google Scholar 

  • Hu, H., Larson, R.G.: Analysis of the effects of Marangoni stresses on the microflow in an evaporating sessile droplet. Langmuir 21(9), 3972–3980 (2005)

    Article  Google Scholar 

  • Hu, H., Larson, R.G.: Marangoni effect reverses coffee-ring depositions. J. Phys. Chem. B 110(14), 7090–7094 (2006)

    Article  Google Scholar 

  • Hu, W.R., Zhao, J.F., Long, M., Zhang, X.W., Liu, Q.S., Hou, M.Y., Kang, Q., Wang, Y.R., Xu, S.H., Kong, W.J., Zhang, H., Wang, S.F., Sun, Y.Q., Hang, H.Y., Huang, Y.P., Cai, W.M., Zhao, Y., Dai, J.W., Zheng, H.Q., Duan, E.K., Wang, J.F.: Space program SJ-10 of microgravity research. Microgravity Sci. Technol. 26(3), 159–169 (2014)

    Article  Google Scholar 

  • Huang, L., Huang, Y., Liang, J.J., Wan, X.J., Chen, Y.S.: Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 4(7), 675–684 (2011)

    Article  Google Scholar 

  • Jiang, P., Ji, Z.Y., Zhang, X.Q., Liu, Z.L., Wang, X.L.: Recent advances in direct ink writing of electronic components and functional devices. Prog. Addit. Manuf. 3(1–2), 65–86 (2018)

    Article  Google Scholar 

  • Leake, S., McGuire, T., Parsons, M., Hirsch, M.P., Straub, J.: Powering an in-space 3D printer using solar light energy. Proceedings of the SPIE Defense + Comercial Sensing Conference: (2016)

  • Lewis, J.A.: Direct Ink Writing of 3D Functional Materials. Adv. Fun. Mater. 16(17), 2193–2204 (2006)

    Article  Google Scholar 

  • Lewis, J.A., Gratson, G.M.: Direct writing in three dimensions. Mater. Today 7(7–8), 32–39 (2004)

    Article  Google Scholar 

  • Li, Y.F., Sheng, Y.J., Tsao, H.K.: Evaporation stains: suppressing the coffee-ring effect by contact angle hysteresis. Langmuir 29(25), 7802–7811 (2013)

    Article  Google Scholar 

  • Li, W.B., Lan, D., Sun, Z.B., Geng, B.M., Wang, X.Q., Tian, W.Q., Zhai, G.J., Wang, Y.R.: Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity. Microgravity Sci. Technol. 28(2), 179–188 (2016a)

    Article  Google Scholar 

  • Li, Y.N., Yang, Q., Li, M.Z., Song, Y.L.: Rate-dependent interface capture beyond the coffee-ring effect. Sci. Rep. 6, 24628 (2016b)

    Article  Google Scholar 

  • Li, W.B., Ji, W.J., Sun, H.H., Lan, D., Wang, Y.R.: Pattern Formation in Drying Sessile and Pendant Droplet: Interactions of Gravity Settling, Interface Shrinkage, and Capillary Flow. Langmuir 35(1), 113–119 (2019)

    Article  Google Scholar 

  • Lipson, H., Kurman, M.: Fabricated: The new world of 3D printing. Wiley, Hoboken (2013)

  • Meseguer, J., Sanz-Andrés, A., Pérez-Grande, I., Pindado, S., Franchini, S., Alonso, G.: Surface tension and microgravity. Eur. J. Phys. 35(5), 055010 (2014)

    Article  Google Scholar 

  • Nguyen, T.A.H., Biggs, S.R., Nguyen, A.V.: Manipulating colloidal residue deposit from drying droplets: Air/liquid interface capture competes with coffee-ring effect. Che. Eng. Sci. 167, 78–87 (2017)

    Article  Google Scholar 

  • Orejon, D., Sefiane, K., Shanahan, M.E.: Stick–slip of evaporating droplets: substrate hydrophobicity and nanoparticle concentration. Langmuir 27(21), 12834–12843 (2011)

    Article  Google Scholar 

  • Park, B.K., Kim, D., Jeong, S., Moon, J., Kim, J.S.: Direct writing of copper conductive patterns by ink-jet printing. Thin Solid Films 515(19), 7706–7711 (2007)

    Article  Google Scholar 

  • Prater, T., Bean, Q., Werkheiser, N., Grguel, R., Beshears, R., Rolin, T., Huff, T., Ryan, R., Ledbetter, F., Ordonez, E.: Analysis of specimens from phase I of the 3D printing in Zero G technology demonstration mission. Rapid Prototyp. J. 23(6), 1212–1225 (2017)

    Article  Google Scholar 

  • Prater, T., Werkheiser, N., Ledbetter, F., Timucin, D., Wheeler, K., Snyder, M.: 3D Printing in Zero G Technology Demonstration Mission: complete experimental results and summary of related material modeling efforts. Int. J. Adv. Manuf. Technol. 101, 391–417 (2019)

    Article  Google Scholar 

  • Sacco, E., Moon, S.K.: Additive manufacturing for space: status and promises. Int. J. Adv. Manuf. Technol. 105(10), 4123–4146 (2019)

    Article  Google Scholar 

  • Stange, M., Dreyer, M.E., Rath, H.J.: Capillary driven flow in circular cylindrical tubes. Phys. Fluids 15(9), 2587–2601 (2003)

    Article  Google Scholar 

  • Wang, G., Zhao, W., Liu, Y.F., Cheng, T.J.: Review of space manufacturing technique and developments (in Chinese). Sci Sin-Phys Mech Astron. 50(4), 047006 (2020)

    Article  Google Scholar 

  • Werkheiser, N.: Overview of nasa initiatives in 3D printing and additive manufacturing. (2014). https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20150002612.pdf. [online]

  • Wong, K.V., Hernandez, A.: A review of additive manufacturing. ISRN Mech. Eng. 2012, 1–10 (2012)

  • Xiao, H.: Introduction to semiconductor manufacturing technology. Prentice-Hall Inc., New Jersey (2001)

    Google Scholar 

  • Yang, W.W., Zhao, W., Li, Q.S., Li, H., Wang, Y.L., Li, Y.X., Wang, G.: Fabrication of Smart Components by 3D Printing and Laser-Scribing Technologies. ACS Appl. Mater. Interfaces 12(3), 3928–3935 (2020)

    Article  Google Scholar 

  • Yunker, P.J., Still, T., Lohr, M.A., Yodh, A.G.: Suppression of the coffee-ring effect by shape-dependent capillary interactions. Nature 476(7360), 308–311 (2011)

    Article  Google Scholar 

  • Zhang, Q., Zheng, Y., Liu, J.: Direct writing of electronics based on alloy and metal (DREAM) ink: A newly emerging area and its impact on energy. environment and health sciences. Front. Energy 6(4), 311–340 (2012)

    Article  Google Scholar 

  • Zhu, W., Ma, X.Y., Gou, M.L., Mei, D.Q., Zhang, K., Chen, S.C.: 3D printing of functional biomaterials for tissue engineering. Curr. Opin. Biotechnol. 40, 103–112 (2016)

    Article  Google Scholar 

  • Zocca, A., Lüchtenborg, J., Mühler, T., Wilbig, J., Mohr, G., Villatte, T., Léonard, F., Nolze, G., Sparenberg, M., Melcher, J., Hilgenberg, K., Günster, J.: Adv. Mater. Technol. 4(10), 1900506 (2019)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge financial support from National Natural Science Foundation of China (Grant No. 11902321 and U1738118) and the Strategic Priority Research Program on Space Science, the Chinese Academy of Sciences (A) (Grant Nos. XDA04020202 and XDA04020406).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuren Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Lan, D. & Wang, Y. Exploration of Direct-Ink-Write 3D Printing in Space: Droplet Dynamics and Patterns Formation in Microgravity. Microgravity Sci. Technol. 32, 935–940 (2020). https://doi.org/10.1007/s12217-020-09820-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12217-020-09820-0

Keywords

Navigation