Skip to main content
Log in

Influence of Microstructure on Low-Cycle and Extremely-Low-Cycle Fatigue Resistance of Low-Carbon Steels

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The goals of this study were to quantify and explain the effects of microstructure on the resistance of low-carbon steels to low-cycle fatigue and to extremely low-cycle fatigue (ELCF). Three different microstructures (ferrite–pearlite, ferrite–martensite, and ferrite–bainite–martensite) were tested, and their fatigue properties were analyzed using the strain-based Coffin–Manson model and an energy-based model. According to the Coffin–Manson model, ferrite–pearlite showed the best ELCF resistance, whereas in the energy-based model that considers the effect of tensile strength ferrite–bainite–martensite revealed the highest ELCF resistance. At similar tensile strength, ferrite–bainite–martensite had longer ELCF life than ferrite–martensite; the difference may be a result of the smaller strain incompatibility between bainite and ferrite than between ferrite and martensite. In all three microstructures, cracks initiated at the surface and propagated into the interior; this result indicates that fracture mode was not altered during cyclic loading at high strain amplitudes. Ferrite–martensite microstructure developed many sub-cracks surrounding a main crack; they could facilitate propagation of a main crack, and thereby degrade fatigue life at high strain amplitudes.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. L. Kang, H. Ge, Predicting ductile crack initiation of steel bridge structures due to extremely low-cycle fatigue using local and non-local models. J. Earthq. Eng. 17, 323–349 (2013). https://doi.org/10.1080/13632469.2012.746211

    Article  Google Scholar 

  2. X. Tian, H. Zhang, Q. Duan, Y. Ji, Establishment and application of fatigue life prediction models for coiled tubing. in ASME 2015 Pressure Vessels Piping Conference PVP2015, vol. 3 (Design, American Society of Mechanical Engineers, 2015), pp. 1–7. https://doi.org/10.1115/PVP2015-45130.

  3. J. Wainstein, J. Perez Ipiña, Fracture toughness of HSLA coiled tubing used in oil wells operations. J. Press. Vessel Technol. Trans ASME. 1, 34 (2012). https://doi.org/10.1115/1.4004569

    Article  CAS  Google Scholar 

  4. S. M. Tipton. Low-cycle fatigue testing of tubular material using non-standard specimens. in: Rice R, Tritsch D, editors. Eff. Prod. Qual. Des. Criteria Struct. Integr., ASTM International; 1998, pp. 102–19. https://doi.org/10.1520/STP1337-EB.

  5. S.S. Manson, Behavior of materials under conditions of thermal stress, Technical note 2933, National Advisory Committee for Aeronautics, USA (1953)

  6. L.F. Coffin Jr., A study of the effects of cyclic thermal stresses on a ductile metal. Trans. Am. Soc. Mech. Eng. 76, 931–950 (1954)

    CAS  Google Scholar 

  7. K. Shimada, J. Komotori, M. Shimizu, The applicability of the Manson–Coffin law and Miner’s law to extremely low cycle fatigue. Trans. Jpn. Soc. Mech. Eng. Ser. A 53, 1178–1185 (1987). https://doi.org/10.1299/kikaia.53.1178

    Article  Google Scholar 

  8. M. Kuroda, Extremely low cycle fatigue life prediction based on a new cumulative fatigue damage model. Int. J. Fatigue 24, 699–703 (2002). https://doi.org/10.1016/S0142-1123(01)00170-0

    Article  CAS  Google Scholar 

  9. L. Xue, A unified expression for low cycle fatigue and extremely low cycle fatigue and its implication for monotonic loading. Int. J. Fatigue 30, 1691–1698 (2008). https://doi.org/10.1016/j.ijfatigue.2008.03.004

    Article  CAS  Google Scholar 

  10. J.C.R. Pereira, A.M.P. de Jesus, J. Xavier, A.A. Fernandes, Ultra low-cycle fatigue behaviour of a structural steel. Eng. Struct. 60, 214–222 (2014). https://doi.org/10.1016/j.engstruct.2013.12.039

    Article  Google Scholar 

  11. R. Liu, Z.J. Zhang, P. Zhang, Z.F. Zhang, Extremely-low-cycle fatigue behaviors of Cu and Cu–Al alloys: damage mechanisms and life prediction. Acta Mater. 83, 341–356 (2015). https://doi.org/10.1016/j.actamat.2014.10.002

    Article  CAS  Google Scholar 

  12. A.M. Kanvinde, G.G. Deierlein, Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue. J. Eng. Mech. 133, 701–712 (2007). https://doi.org/10.1061/(ASCE)0733-9399(2007)133:6(701)

    Article  Google Scholar 

  13. A. Sherman, R. Davies, The effect of martensite content on the fatigue of a dual-phase steel. Int. J. Fatigue 3, 36–40 (1981). https://doi.org/10.1016/0142-1123(81)90047-5

    Article  Google Scholar 

  14. H.J. Roven, E. Nes, Cyclic deformation of ferritic steel—I. Stress–strain response and structure evolution. Acta Metall. Mater. 39, 1719–1733 (1991). https://doi.org/10.1016/0956-7151(91)90141-M

    Article  CAS  Google Scholar 

  15. S. Mediratta, V. Ramaswamy, P. Rao, Influence of ferrite–martensite microstructural morphology on the low cycle fatigue of a dual-phase steel. Int. J. Fatigue 7, 107–115 (1985). https://doi.org/10.1016/0142-1123(85)90041-6

    Article  CAS  Google Scholar 

  16. S.K. Paul, N. Stanford, T. Hilditch, Effect of martensite volume fraction on low cycle fatigue behaviour of dual phase steels: experimental and microstructural investigation. Mater. Sci. Eng. A 638, 296–304 (2015). https://doi.org/10.1016/j.msea.2015.04.059

    Article  CAS  Google Scholar 

  17. K. Nakajima, T. Urabe, Y. Hosoya, S. Kamiishi, T. Miyata, N. Takeda, Influence of microstructural morphology and prestraining on short fatigue crack propagation in dual-phase steels. ISIJ Int. 41, 298–305 (2001). https://doi.org/10.2355/isijinternational.41.298

    Article  CAS  Google Scholar 

  18. M. Guan, H. Yu, Fatigue crack growth behaviors in hot-rolled low carbon steels: a comparison between ferrite–pearlite and ferrite–bainite microstructures. Mater. Sci. Eng. A 559, 875–881 (2013). https://doi.org/10.1016/j.msea.2012.09.036

    Article  CAS  Google Scholar 

  19. S.K. Paul, N. Stanford, T. Hilditch, Effect of martensite morphology on low cycle fatigue behaviour of dual phase steels: experimental and microstructural investigation. Mater. Sci. Eng. A 644, 53–60 (2015). https://doi.org/10.1016/j.msea.2015.07.044

    Article  CAS  Google Scholar 

  20. N. Stanford, J. Wang, T. Hilditch, Quantification of strain partitioning during low cycle fatigue of multi-phase steels containing a bainite matrix. Int. J. Fatigue 129, 105218 (2019). https://doi.org/10.1016/j.ijfatigue.2019.105218

    Article  CAS  Google Scholar 

  21. ASTM E606/E606M-12. Standard test method for strain-controlled fatigue testing. ASTM Int 2012. https://doi.org/10.1520/E0606_E0606M-12.

  22. P.B. Hirsch, Electron Microscopy of Thin Crystals (Krieger Publishing Company, Second. R. E, 1977)

    Google Scholar 

  23. T. Malis, S.C. Cheng, R.F. Egerton, EELS log-ratio technique for specimen-thickness measurement in the TEM. J. Electron. Microsc. Tech. 8, 193–200 (1988). https://doi.org/10.1002/jemt.1060080206

    Article  CAS  Google Scholar 

  24. M. Calcagnotto, D. Ponge, E. Demir, D. Raabe, Orientation gradients and geometrically necessary dislocations in ultrafine grained dual-phase steels studied by 2D and 3D EBSD. Mater. Sci. Eng. A 527, 2738–2746 (2010). https://doi.org/10.1016/j.msea.2010.01.004

    Article  CAS  Google Scholar 

  25. S. Majumdar, S. Roy, K.K. Ray, Fatigue performance of dual-phase steels for automotive wheel application. Fatigue Fract. Eng. Mater. Struct. 40, 315–332 (2017). https://doi.org/10.1111/ffe.12491

    Article  Google Scholar 

  26. C.W. Shao, P. Zhang, R. Liu, Z.J. Zhang, J.C. Pang, Z.F. Zhang, Low-cycle and extremely-low-cycle fatigue behaviors of high-Mn austenitic TRIP/TWIP alloys: property evaluation, damage mechanisms and life prediction. Acta Mater. 103, 781–795 (2016). https://doi.org/10.1016/j.actamat.2015.11.015

    Article  CAS  Google Scholar 

  27. Y.J. Park, D.H. Stone, Cyclic behavior of class u wheel steel. Am. Soc. Mech. Eng. 103, 113–118 (1980)

    Google Scholar 

  28. A. Ramazani, K. Mukherjee, A. Schwedt, P. Goravanchi, U. Prahl, W. Bleck, Quantification of the effect of transformation-induced geometrically necessary dislocations on the flow-curve modelling of dual-phase steels. Int. J. Plast. 43, 128–152 (2013). https://doi.org/10.1016/j.ijplas.2012.11.003

    Article  CAS  Google Scholar 

  29. Z.Y. Li, X.L. Liu, G.Q. Wu, Z. Huang, Fretting fatigue behavior of Ti–6Al–4V and Ti–10V–2Fe–3Al alloys. Met. Mater. Int. 25, 64–70 (2019). https://doi.org/10.1007/s12540-018-0158-8

    Article  CAS  Google Scholar 

  30. B.B. He, K. Zhu, M.X. Huang, On the nanoindentation behaviour of complex ferritic phases. Philos. Mag. Lett. 94, 439–446 (2014). https://doi.org/10.1080/09500839.2014.921348

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by POSCO. The authors are thankful for the support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Soo Lee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noh, K., Shams, S.A.A., Kim, W. et al. Influence of Microstructure on Low-Cycle and Extremely-Low-Cycle Fatigue Resistance of Low-Carbon Steels. Met. Mater. Int. 27, 3862–3874 (2021). https://doi.org/10.1007/s12540-020-00819-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-020-00819-1

Keywords

Navigation