Skip to main content
Log in

The Effect of Natural Resin on Thermo-physical Properties of Expanded Vermiculite–Cement Composites

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This study focuses on production of lightweight concrete that presents thermal insulation property. Lightweight concretes were produced using resin-added cement and expanded vermiculite. The rates of expanded vermiculite were determined as 20%, 40%, 60%, and 80% of the total volume in the mixture. The amount of tragacanth resin in the mixture was detected as 0%, 0.5% and 1% of the total weight of cement and expanded vermiculite. Thermal, mechanical and microstructure properties of the samples produced were determined. Porosity ratio increased by 15.01% to 55.22%, 0.5% and 1% in samples without resin and by 18.97% to 57.88% and 19.64% to 60.73% in resin-added samples, respectively. As the resin increased, density, thermal conductivity, compressive strength decreased and porosity, abrasion loss and water absorption rates increased. Similarly, when expanded vermiculite rate of the samples without resin in the mixture was increased from 20% to 80%, density, thermal conductivity, and compressive strength decreased at the rates of 14.13% to 21.29%, 14.32% to 24.36%, and 31.37% to 39.82%, respectively, compared to 0.5% resin samples and the rates of 12.34% to 13.05%, 12.37% to 19.59%, and 17.65% to 35.29% compared to 0.1% resin samples. Also, the water absorption rates of the samples were found to be lower than 30%, which is the critical value. It was shown that expanded vermiculite and tragacanth resin-added lightweight concrete samples would provide a good performance in non-load bearing places in the buildings, in the partitions instead of bricks, in the ceiling and floor covering, and as plaster and gypsum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

AL:

Abrasion loss (%)

avr:

Average

C:

Cement

d:

Dry

Ev:

Expanded vermiculite

Tr:

Tragacanth resin

w:

Wet

WA:

Water absorption (%)

Fcomp.:

Compressive strength (MPa)

F tensile :

Tensile strength (MPa)

P:

Porosity (%)

E :

Modulus of elasticity (GPa)

ρ:

Density (g·cm−3)

SE:

Standard error

References

  1. M.S. Mohsen, B.A. Akash, Energy. Conver. Manage. 42, 1307 (2001)

    Article  Google Scholar 

  2. M.K. Akyüz, Ö. Altuntaş, M.Z. Söğüt, Sustain. 9, 1849 (2017)

    Article  Google Scholar 

  3. O. Sengül, S. Azizi, F. Karaosmanoglu, M.A. Tasdemir, Energy Build. 43, 671 (2011)

    Article  Google Scholar 

  4. M.J. Shannag, Constr. Build. Mater. 25, 658 (2011)

    Article  Google Scholar 

  5. O. Unal, T. Uygunoglu, A. Yildiz, Build. Environ. 42, 584 (2007)

    Article  Google Scholar 

  6. A. Trník, L. Scheinherrová, T. Kulovaná, R. Černý, Int. J. Thermophys. 37, 12 (2016)

    Article  ADS  Google Scholar 

  7. E. Vejmelková, P. Konvalinka, P. Padevět, L. Kopecký, M. Keppert, R. Černý, Int. J. Thermophys. 30, 1310 (2009)

    Article  ADS  Google Scholar 

  8. R. Zhao, H. Guo, X. Yi, W. Gao, H. Zhang, Y. Bai, T. Wang, Int. J. Thermophys. 41, 1 (2020)

    Article  Google Scholar 

  9. X. Liang, C. Wu, Int. J. Thermophys. 39, 142 (2018)

    Article  ADS  Google Scholar 

  10. J. Antonio, D. Mateus, Appl. Acoust. 89, 141 (2015)

    Article  Google Scholar 

  11. H. Kim, H. Lee, Appl. Acoust. 71, 607 (2010)

    Article  Google Scholar 

  12. H. Kim, J. Jeon, H. Lee, Constr. Build. Mater. 29, 193 (2012)

    Article  Google Scholar 

  13. K.S. Youm, Y.J. Jeong, E.S.H. Han, T.S. Yun, Constr. Build. Mater. 73, 442 (2014)

    Article  Google Scholar 

  14. A.L. Nguyen, S. Beaucour, A. Ortola, Noumowé, Constr. Build. Mater. 51, 121 (2014)

    Article  Google Scholar 

  15. D. Mysore, T. Viraraghavan, Y.C. Jin, Water. Res. 39, 2643 (2005)

    Article  Google Scholar 

  16. V.I. Andronova, Refract. Indust. Ceram. 48, 91 (2007)

    Article  Google Scholar 

  17. J.H. Eom, Y.W. Kim, S.S. Lee, D.H. Jeong, Ceram. Soci. 49, 347 (2012)

    Article  Google Scholar 

  18. F. Köksal, J.J. del Coz Diaz, O. Gencel, F.P. Rabanal, Rabanal, Comput. Concr. 12, 19 (2013)

    Article  Google Scholar 

  19. M. Sütçü, Ceram. Int. 41, 2819 (2015)

    Article  Google Scholar 

  20. O. Gencel, J.J. del Coz Diaz, M. Sutcu, F. Koksal, F.A. Rabanal, G. Martinez-Barrera, W. Brostow, Energy Build. 70, 135 (2014)

    Article  Google Scholar 

  21. J. Formosa, L. Haurie, J.M. Chimenos, A.M. Lacasta, J.R. Rosell, (2008). Materials Science Forum 587, 898 Trans Tech Publications Ltd

  22. S. Abidi, B. Nait-Ali, Y. Joliff, C. Favotto, Compos. Part B: Eng. 68, 392 (2015)

    Article  Google Scholar 

  23. F. Köksal, M.A. Serrano-López, M. Şahin, O. Gencel, C. López-Colina, Mater. Struct. 48, 2083 (2015)

    Article  Google Scholar 

  24. F. Koksal, O. Gencel, M. Kaya, Const. Build. Mater. 88, 175 (2015)

    Article  Google Scholar 

  25. M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, R. Almuzaiqer, O. Bayaquob, H. Salah, A. Alsaggaf, Z. Algafri, J. Nat. Fibers 1 (2020)

  26. M. Ali, A. Alabdulkarem, A. Nuhait, K. Al-Salem, G. Iannace, R. Almuzaiqer, A. Al-turki, F. Al-Ajlan, Y. Al-Mosab, A. Al-Sulaimi, J. Build. Eng. 32, 101452 (2020)

    Article  Google Scholar 

  27. A. Alabdulkarem, M. Ali, G. Iannace, S. Sadek, R. Almuzaiqer, Constr. Build. Mater. 187, 185 (2018)

    Article  Google Scholar 

  28. E.K. Akpinar, F. Koçyigit, J. Adhes. Sci. Technol. 30, 534 (2016)

    Article  Google Scholar 

  29. F. Koçyiğit, Int. J. Thermophys. 41, 41 (2020)

    Article  ADS  Google Scholar 

  30. A. Bicer, F. Kar, J. Adhes, Sci. Technol. 31, 2335 (2017)

    Google Scholar 

  31. A. Bicer, J. Adhes, Sci. Technol. 33, 1019 (2019)

    Google Scholar 

  32. A. Bicer, F. Kar, Int. J. Thermophys. 40, 9 (2019)

    Article  ADS  Google Scholar 

  33. M. Ali, A. Alabdulkarem, Constr. Build. Mater. 138, 276 (2017)

    Article  Google Scholar 

  34. C. Schackow, M.V. Effting, S. Folgueras, G.A. Güths, Mendes, Const. Build. Mater. 57, 190 (2014)

    Article  Google Scholar 

  35. H. Uysal, R. Demirboğa, R. Şahin, R. Gül, Cem. Con. Res. 34, 845 (2004)

    Article  Google Scholar 

  36. M. Ali, J. Nat. Fibers 13, 343 (2016)

    Article  Google Scholar 

  37. F. Köksal, Y. Şahin, O. Gencel, Const. Build. Mater. 257, 119547 (2020)

    Article  Google Scholar 

  38. F. Koksal, E. Mutluay, O. Gencel, Const. Build. Mater. 236, 117789 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fatih Koçyiğit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koçyiğit, F., Çay, V.V. The Effect of Natural Resin on Thermo-physical Properties of Expanded Vermiculite–Cement Composites. Int J Thermophys 41, 138 (2020). https://doi.org/10.1007/s10765-020-02719-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02719-3

Keywords

Navigation