Skip to main content
Log in

Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

Karst caves are characterized by darkness, low temperature, high humidity, and oligotrophic organisms due to its relatively closed and strongly zonal environments. Up to now, 1626 species in 644 genera of fungi have been reported from caves and mines worldwide. In this study, we investigated the culturable mycobiota in karst caves in southwest China. In total, 251 samples from thirteen caves were collected and 2344 fungal strains were isolated using dilution plate method. Preliminary ITS analyses showed that these strains belonged to 610 species in 253 genera. Among these species, 88.0% belonged to Ascomycota, 8.0% Basidiomycota, 1.9% Mortierellomycota, 1.9% Mucoromycota, and 0.2% Glomeromycota. The majority of these species have been previously known from other environments, and some of them are known as mycorrhizal or pathogenic fungi. About 52.8% of these species were discovered for the first time in karst caves. Based on morphological and phylogenetic distinctions, 33 new species were identified and described in this paper. Meanwhile, one new genus of Cordycipitaceae, Gamszarea, and five new combinations are established. This work further demonstrated that Karst caves encompass a high fungal diversity, including a number of previously unknown species. Taxonomic novelties: New genus: Gamszarea Z.F. Zhang & L. Cai; Novel species: Amphichorda cavernicola, Aspergillus limoniformis, Aspergillus phialiformis, Aspergillus phialosimplex, Auxarthron chinense, Auxarthron guangxiense, Auxarthronopsis globiasca, Auxarthronopsis pedicellaris, Auxarthronopsis pulverea, Auxarthronopsis stercicola, Chrysosporium pallidum, Gamszarea humicola, Gamszarea lunata, Gamszarea microspora, Gymnoascus flavus, Jattaea reniformis, Lecanicillium magnisporum, Microascus collaris, Microascus levis, Microascus sparsimycelialis, Microascus superficialis, Microascus trigonus, Nigrospora globosa, Paracremonium apiculatum, Paracremonium ellipsoideum, Paraphaeosphaeria hydei, Pseudoscopulariopsis asperispora, Setophaeosphaeria microspora, Simplicillium album, Simplicillium humicola, Wardomycopsis dolichi, Wardomycopsis ellipsoconidiophora, Wardomycopsis fusca; New combinations: Gamszarea indonesiaca (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea kalimantanensis (Kurihara & Sukarno) Z.F. Zhang & L. Cai, Gamszarea restricta (Hubka, Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, Gamszarea testudinea (Hubka, Kubátová, Nonaka, Čmoková & Řehulka) Z.F. Zhang & L. Cai, Gamszarea wallacei (H.C. Evans) Z.F. Zhang & L. Cai.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

References

  • Ajello L, Briceño-Maaz T, Campins H, Moore JC (1960a) Isolation of Histoplasma capsulatum from an oil bird (Steatornis caripensis) cave in Venezuela. Mycopath Mycol Appl 12:199–206

    CAS  Google Scholar 

  • Ajello L, Manson-Bahr PEC, Moore JC (1960b) Amboni caves, Tanganyika, a new endemic area for Histoplasma capsulatum. Am J Trop Med Hyg 9:633–638

    CAS  PubMed  Google Scholar 

  • Al-Bedak OA, Ismail MA, Mohamed RA (2019) Paracremonium moubasheri, a new species from an alkaline sediment of Lake Hamra in Wadi-El-Natron, Egypt with a key to the accepted species. Stud Fungi 216–222

  • Al-Doory Y, Rhoades ER (1968) Isolation of Histoplasma capsulatum from a Texas cave. Mycopath Mycol Appl 35:201–207

    CAS  Google Scholar 

  • Ariyawansa HA, Tanaka K, Thambugala KM, Phookamsak R, Tian Q, Camporesi E, Hongsanan S, Monkai J, Wanasinghe DN, Mapook A, Chukeatirote E (2014) A molecular phylogenetic reappraisal of the Didymosphaeriaceae (=Montagnulaceae). Fungal Divers 68:69–104

    Google Scholar 

  • Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    CAS  PubMed  Google Scholar 

  • Baranetzky J (1872) Entwicklungsgeschichte des Gymnoascus reessii. Bot Zeit 30:145–160

    Google Scholar 

  • Barr ME (1985) Notes on the Calosphaeriales. Mycologia 77:549–565

    Google Scholar 

  • Barron GL, Cain RF, Gilman JC (1961) The genus Microascus. Can J Botany 39:1609–1631

    Google Scholar 

  • Barton HA, Jurado V (2007) What’s up down there? Microbial diversity in caves. Microbe 2:132–138

    Google Scholar 

  • Barton HA, Northup DE (2007) Geomicrobiology in cave environments: past, current and future perspectives. J Cave Karst Stud 69:163–178

    Google Scholar 

  • Baute R, Deffieux G, Merlet D, Baute MA, Neveu A (1981) New insecticidal cyclodepsipeptides from the fungus Isaria felina. I. Production, isolation and insecticidal properties of isariins B, C and D. J Antibiot 34:1261–1265

    CAS  Google Scholar 

  • Belyagoubi L, Belyagoubi-Benhammou N, Jurado V, Dupont J, Lacoste S, Djebbah F, Ounadjela FZ, Benaissa S, Habi S, Abdelouahid DE, Saiz-Jimenez C (2018) Antimicrobial activities of culturable microorganisms (actinomycetes and fungi) isolated from Chaabe Cave, Algeria. Int J Speleol 47:189–199

    Google Scholar 

  • Bercea S, Năstase-Bucur R, Mirea IC, Măntoiu DŞ, Kenesz M, Petculescu A, Baricz A, Andrei A, Banciu HL, Papp B, Constantin S, Moldovan OT (2018) Novel approach to microbiological air monitoring in show caves. Aerobiologia 34:445–468

    Google Scholar 

  • Berlese AN (1900) Icones Fungorum. Pyrenomycetes. Sphaeriaceae. Allantosporae. 3:1–52

    Google Scholar 

  • Blehert DS, Hicks AC, Behr M, Meteyer CU, Berlowski-Zier BM, Buckles EL, Coleman JTH, Darling SR, Gargas A, Niver R, Okoniewski JC, Rudd RJ, Stone WB (2009) Bat white-nose syndrome: an emerging fungal pathogen? Science 323:227

    CAS  PubMed  Google Scholar 

  • Boyles JG, Cryan PM, Mccracken GF, Kunz TH (2011) Economic importance of bats in agriculture. Science 332:41–42

    PubMed  Google Scholar 

  • Brad T, Itcus C, Pascu MD, Perșoiu A, Hillebrand-Voiculescu A, Iancu L, Purcarea C (2018) Fungi in perennial ice from Scărișoara Ice Cave (Romania). Sci Rep 8:10096

    PubMed  PubMed Central  Google Scholar 

  • Burow K, Grawunder A, Harpke M, Pietschmann S, Ehrhardt R, Wagner L, Voigt K, Merten D, Buchel G, Kothe E (2019) Microbiomes in an acidic rock–water cave system. Fems Microbiol Lett 366:fnz167

    CAS  PubMed  Google Scholar 

  • Busquets A, Fornós JJ, Zafra F, Lalucat J, Merino A (2014) Microbial communities in a coastal cave: Cova des Pas de Vallgornera (Mallorca, Western Mediterranean). Int J Speleol 43:205–216

    Google Scholar 

  • Cardoso MGB, Trento MVC, Reis CH, Marcussi S, Cardoso PG (2019) Lecanicillium aphanocladii: snake venom phospholipases A2 and proteases as tools to prospect enzymatic inhibitors. Lett Appl Microbiol 69:88–95

    CAS  PubMed  Google Scholar 

  • Cheeptham N (2012) Cave microbiomes: a novel resource for drug discovery. Springer Briefs in Microbiology, Springer, New York

    Google Scholar 

  • Chen WH (2006) An outline of speleology research progress. Geol Rev 52:783–792

    Google Scholar 

  • Chiriví-Salomón JS, Danies G, Restrepo S, Sanjuan T (2015) Lecanicillium sabanense sp. nov. (Cordycipitaceae) a new fungal entomopathogen of coccids. Phytotaxa 234:63–74

    Google Scholar 

  • Cloutier ML, Carmichael SK, Carson MA, Madritch MD, Brauer SL (2017) Carbon quantity and quality drives variation in cave microbial communities and regulates Mn (II) oxidation. Biogeochemistry 134:77–94

    CAS  Google Scholar 

  • Collado J, Platas G, Paulus B, Bills GF (2007) High-throughput culturing of fungi from plant litter by a dilution-to-extinction technique. FEMS Microbiol Ecol 60:521–533

    CAS  PubMed  Google Scholar 

  • Connell L, Staudigel H (2013) Fungal diversity in a dark oligotrophic volcanic ecosystem (DOVE) on Mount Erebus, Antarctica. Biology 2:798–809

    PubMed  PubMed Central  Google Scholar 

  • Corda ACJ (1833) Deutschlands Flora, Abt. III. Die Pilze Deutschlands 3:65–96

    Google Scholar 

  • Crous PW, Groenewald JZ (2013) A phylogenetic re-evaluation of Arthrinium. IMA Fungus 4:133–154

    PubMed  PubMed Central  Google Scholar 

  • Crous PW, Shivas RG, Quaedvlieg W, Van der Bank M, Zhang Y, Summerell BA, Guarro J, Wingfield MJ, Wood AR, Alfenas AC, Braun U, Canolira JF, Garcia D, Marinfelixy Y, Alvarado P, Andrade JP, Armengol J, Assefa A, Breeyen AD, Camele I, Cheewangkoon R, De Souza JT, Duong TA, Esteveraventos F, Fournier J, Frisullo S, Garciajimenez J, Gardiennet A, Gene J, Hernandezrestrepo M, Hirooka Y, Hospenthal DR, King AJ, Lechat CL, Lombard L, Mang SM, Marbach PAS, Marincowitz S, Montanomata NJ, Moreno G, Perez CA, Sierra AMP, Robertson JL, Roux J, Rubio E, Schumacher RK, Stchigel AM, Sutton DA, Tan YP, Thompson EH, Linde EJVD, Walker AK, Walker DM, Wickes BL, Wong PTW, Groenewald JZ (2014) Fungal Planet description sheets: 214–280. Persoonia 32:184

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI, Carnegie AJ, Hardy GESTJ, Smith D, Summerell BA, Cano-Lira JF, Guarro J, Houbraken J, Lombard L, Martín MP, Sandoval-Denis M, Alexandrova AV, Barnes CW, Baseia IG, Bezerra JDP, Guarnaccia V, May TW, Hernández-Restrepo M, Stchigel AM, Miller AN, Ordoñez ME, Abreu VP, Accioly T, Agnello C, Agustin Colmán A, Albuquerque CC, Alfredo DS, Alvarado P, Araújo-Magalhães GR, Arauzo S, Atkinson T, Barili A, Barreto RW, Bezerra JL, Cabral TS, Camello Rodríguez F, Cruz RHSF, Daniëls PP, da Silva BDB, de Almeida DAC, de Carvalho Júnior AA, Decock CA, Delgat L, Denman S, Dimitrov RA, Edwards J, Fedosova AG, Ferreira RJ, Firmino AL, Flores JA, García D, Gené J, Góis JS, Gomes AAM, Gonçalves CM, Gouliamova DE, Groenewald M, Guéorguiev BV, Guevara-Suarez M, Gusmão LFP, Hosaka K, Hubka V, Huhndorf SM, Jadan M, Jurjević Ž, Kraak B, Kučera V, Kumar TKA, Kušan I, Lacerda SR, Lamlertthon S, Lisboa WS, Loizides M, Luangsa-ard JJ, Lysková P, Mac Cormack WP, Macedo DM, Machado AR, Malysheva EF, Marinho P, Matočec N, Meijer M, Mešić A, Mongkolsamrit S, Moreira KA, Morozova OV, Nair KU, Nakamura N, Noisripoom W, Olariaga I, Oliveira RJV, Paiva LM, Pawar P, Pereira OL, Peterson SW, Prieto M, Rodríguez-Andrade E, Rojo De Blas C, Roy M, Santos ES, Sharma R, Silva GA, Souza-Motta CM, Takeuchi-Kaneko Y, Tanaka C, Thakur A, Smith MTH, Tkalčec Z, Valenzuela-Lopez N, Van der Kleij P, Verbeken A, Viana MG, Wang XW, Groenewald JZ (2017) Fungal Planet description sheets: 625–715. Persoonia 39:270

    CAS  PubMed  PubMed Central  Google Scholar 

  • Crous PW, Wingfield MJ, Burgess TI, Hardy GSJ, Gené J, Guarro J, Baseia IG, Garcia D, Gusmao LFP, De Souzamotta CM, Thangavel R, Adamcik S, Barili A, Barnes CW, Bezerra JDP, Bordallo J, Canolira JF, De Oliveira RJV, Ercole E, HubkaV Iturrietagonzalez I, Kubatova A, Martin MP, Moreau P, Morte A, Ordonez ME, Rodriguez A, Stchigel AM, Vizzini AV, Abdollahzadeh J, Abreu VP, Adamcikova K, Albuquerque GM, Alexandrova AV, Duarte EA, Armstrongcho C, Banniza S, Barbosa RDN, Bellanger J, Bezerra JL, Cabral TS, Cabon M, Caicedo E, Cantillo T, Carnegie AJ, Carmo LT, Castanedaruiz RF, Clement CR, Cmokova A, Conceicao LB, Cruz RHSF, Damm U, Da Silva BDB, Da Silva GA, Da Silva RMF, De ASantiago ALCM, De Oliveira LF, De Souza CAF, Deniel F, Dima B, Dong G, Edwards J, Felix CR, Fournier J, Gibertoni TB, Hosaka K, Iturriaga T, Jadan M, Jany JL, Jurjevic Z, Kolarik M, Kusan I, Landell MF, Cordeiro TRL, Lima DX, Loizides M, Luo S, Machado AR, Madrid H, Magalhaes OMC, Marinho P, Matocec N, Mesic A, Miller AN, Morozova OV, Neves RP, Nonaka K, Nováková A, Oberlies NH, Oliveirafilho JRC, Oliveira TGL, Papp V, Pereira OL, Perrone G, Peterson SW, Pham THG, Raja HA, Raudabaugh DB, Rehulka J, Rodriguezandrade E, Saba M, Schauflerova A, Shivas RG, Simonini G, Siqueira JPZ, Sousa JO, Stajsic V, Svetasheva TY, Tan YP, Tkalcec Z, Ullah S, Valente P, Valenzuelalopez N, Abrinbana M, Marques DAV, Wong PTW, De Lima VX, Groenewald JZ (2018) Fungal Planet description sheets: 716–784. Persoonia 40:240

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cunningham KI, Northup DE, Pollastro RM, Wright WG, LaRock EJ (1995) Bacteria, fungi and bioKarst in Lechuguilla Cave, Carlsbad Caverns National Park, New Mexico. Environ Geol 25:2–8

    Google Scholar 

  • Currah RS (1985) Taxonomy of the Onygenales: Arthrodermaceae, Gymnoascaceae, Myxotrichaceae and Onygenaceae. Mycotaxon 24:1–216

    Google Scholar 

  • Damm U, Crous PW, Fourie PH (2008) A fissitunicate ascus mechanism in the Calosphaeriaceae, and novel species of Jattaea and Calosphaeria on Prunus wood. Persoonia 20:39–52

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daranagama DA, Hyde KD, Sir EB, Thambugala KM, Tian Q, Samarakoon MC, McKenzie EHC, Jayasiri SC, Tibpromma S, Bhat JD, Liu XZ, Stadler M (2018) Towards a natural classification and backbone tree for Graphostromataceae, Hypoxylaceae, Lopadostomataceae and Xylariaceae. Fungal Divers 88:1–165

    Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dayarathne MC, Abeywickrama P, Jones EBG, Bhat DJ, Chomnunti P, Hyde KD (2017) Multi-gene phylogeny of Jattaea bruguierae, a novel asexual morph from Bruguiera cylindrica. Stud Fungi 2:235–245

    Google Scholar 

  • Di Salvo AF, Ajello L, Palmer JW Jr, Winkler WG (1969) Isolation of Histoplasma capsulatum from Arizona bats. Am J Epidemiol 89:606–614

    PubMed  Google Scholar 

  • Dobat K (1967) Ein bisher unveroffentlichtes botanisches manuskript Alexander von Humboldts: Plantae subterranae Europ (1794) cum Iconibus. Akademie Der Wissenschaften und der Literatur 6:16–19

    Google Scholar 

  • Docampo S, Trigo MM, Recio M, Melgar M, Garciasanchez J, Calderonezquerro MC, Cabezudo B (2010) High incidence of Aspergillus and Penicillium spores in the atmosphere of the cave of Nerja (Malaga, southern Spain). Aerobiologia 26:89–98

    Google Scholar 

  • Docampo S, Trigo MM, Recio M, Melgar M, Garciasanchez J, Cabezudo B (2011) Fungal spore content of the atmosphere of the cave of Nerja (southern Spain): diversity and origin. Sci Total Environ 409:835–843

    CAS  PubMed  Google Scholar 

  • Domsch KH, Gams W, Anderson TH (2007) Compendium of soil fungi, 2nd edn. IHG Verlag, Eching

    Google Scholar 

  • Doveri F, Pecchia S, Vergara M, Sarrocco S, Vannacci G (2012) A comparative study of Neogymnomyces virgineus, a new keratinolytic species from dung, and its relationships with the Onygenales. Fungal Divers 52:13–34

    Google Scholar 

  • Doyle JJ (1987) A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull 19:11–15

    Google Scholar 

  • Dyląg M, Sawicki A, Ogórek R (2019) Diversity of species and susceptibility phenotypes toward commercially available fungicides of cultivable fungi colonizing bones of ursus spelaeus on display in Niedźwiedzia Cave (Kletno, Poland). Diversity 11:224

    Google Scholar 

  • Elad Y, Chet I, Henis Y (1982) Degradation of plant pathogenic fungi by Trichoderma harzianum. Can J Microbiol 28:719–725

    CAS  Google Scholar 

  • Enghoff H, Santamaria S (2015) Infectious intimacy and contaminated caves—three new species of ectoparasitic fungi (Ascomycota: Laboulbeniales) from blaniulid millipedes (Diplopoda: Julida) and inferences about their transmittal mechanisms. Org Divers Evol 15:249–263

    Google Scholar 

  • Eriksson O (1967) On graminicolous pyrenomycetes from Fennoscandia I. Dictyosporous species (339–380). II. Phragmosporous and scolecosporous species (381–440). III. Amerosporous and didymosporous species (441–466). Arkiv før Botanik 6:339–466

    Google Scholar 

  • Felse PA, Panda T (1999) Self-directing optimization of parameters for extracellular chitinase production by Trichoderma harzianum in batch mode. Process Biochem 34:563–566

    CAS  Google Scholar 

  • Feng MG, Poprawski TJ, Khachatourians GG (1994) Production, formulation and application of the entomopathogenic fungus Beauveria bassiana for insect control: current status. Biocontrol Sci Technol 4:3–34

    Google Scholar 

  • Ford D, Williams PD (2013) Karst hydrogeology and geomorphology. Wiley, Chichester

    Google Scholar 

  • Fries EM (1825) Systema orbis vegetabilis: Plantæ homonemeæ. Typographia academica, Pars

    Google Scholar 

  • Gabriel CR, Northup DE (2013) Microbial ecology: caves as an extreme habitat. In: Cheeptham N (ed) Cave microbiomes: a novel resource for drug discovery. Springer, New York, pp 85–108

    Google Scholar 

  • Gams W, Zare R (2001) A revision of Verticillium sect. Prostrata. III. Generic classifiation. Nova Hedwigia 72:329–337

    Google Scholar 

  • Geiser DM, LoBuglio KF, Gueidan C (2015) 5. Pezizomycotina: eurotiomycetes. In: Systematics and evolution. Springer, Berlin, pp 121–141.

  • Glass NL, Donaldson GC (1995) Development of primer sets designed for use with the PCR to amplify conserved genes from filamentous Ascomycetes. Appl Environ Microb 61:1323–1330

    CAS  Google Scholar 

  • Gueidan C, Aptroot A, da Silva Cáceres ME, Badali H, Stenroos S (2014) A reappraisal of orders and families within the subclass Chaetothyriomycetidae (Eurotiomycetes, Ascomycota). Mycol Prog 13:990

    Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Syst Biol 52:696–704

    PubMed  Google Scholar 

  • Hawksworth DL, Lücking R (2017) Fungal diversity revisited: 2.2 to 3.8 million species. Microbiol Spectr 5.

  • Hongsanan S, Maharachchikumbura SS, Hyde KD, Samarakoon MC, Jeewon R (2017) An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers 84:25–41

    Google Scholar 

  • Hose LD, Palmer AN, Palmer MV, Northup DE, Boston PJ, Duchene HR (2000) Microbiology and geochemistry in a hydrogen-sulphide-rich Karst environment. Chem Geol 169:399–423

    CAS  Google Scholar 

  • Houbraken J, Samson RA (2011) Phylogeny of Penicillium and the segregation Trichocomaceae into three families. Stud Mycol 70:1–51

    CAS  PubMed  PubMed Central  Google Scholar 

  • Houbraken J, de Vries RP, Samson RA (2014) Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Adv Appl Microbiol 86:199–249

    PubMed  Google Scholar 

  • Hsu MJ, Agoramoorthy G (2001) Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of Taiwan. Fungal Divers 7:27–33

    Google Scholar 

  • Huang S, Maharachchikumbura SNS, Jeewon R, Bhat DJ, Phookamsak P, Hyde KD, Alsadi AM, Kang J (2018) Lecanicillium subprimulinum (Cordycipitaceae, Hypocreales), a novel species from Baoshan, Yunnan. Phytotaxa 348:99–108

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    CAS  PubMed  Google Scholar 

  • Hyde KD, Fröhlich J, Taylor JE (1998) Fungi from palms. XXXVI. Reflections on unitunicate ascomycetes with apiospores. Sydowia 50:21–80

    Google Scholar 

  • Hyde KD, Jones EBG, Liu JK, Ariyawansa HA, Boehm E, Boonmee S, Braun U, Chomnunti P, Crous PW, Dai DQ, Diederich P, Dissanayake A, Doilom M, Doveri F, Hongsanan S, Jayawardena R, Lawrey JD, Li YM, Liu YX, Lücking R, Monka J, Muggia L, Nelsen MP, Pang KL, Phookamsak R, Senanayake IC, Shearer CA, Suetrong S, Tanaka K, Thambugala KM, Wijayawardene NN, Wikee S, Wu HX, Zhang Y, Begoña AH, Alias SA, Aptroot A, Bahkali AH, Bezerra JL, Bhat DJ, Camporesi E, Chukea E, Gueidan C, Hawksworth DL, Hirayama K, Hoog SD, Kang JK, Knudsen K, Li WJ, Li XH, Liu ZY, Mapook A, Mckenzie EHC, Miller AN, Mortimer PE, Phillips AJL, Raja HA, Scheuer C, Schumm F, Taylor JE, Tian Q, Tibpromma S, Wanasinghe DN, Wang Y, Xu JC, Yacharoen S, Yan JY, Zang M (2013) Families of Dothideomycetes. Fungal Divers 63:1–313

    Google Scholar 

  • Hyde KD, Norphanphoun C, Abreu VP, Bazzicalupo A, Chethana KWT, Clericuzio M, Dayarathne MC, Dissanayake AJ, Ekanayaka AH, He MQ, Hongsanan S, Huang SK, Jayasiri SC, Jayawardena RS, Karunarathna A, Konta S, Kušan I, Lee H, Li J, Lin CG, Liu NG, Lu YZ, Luo ZL, Manawasinghe IS, Mapook A, Perera RH, Phookamsak R, Phukhamsakda C, Siedlecki I, Soares AM, Tennakoon DS, Tian Q, Tibpromma S, Wanasinghe DN, Xiao YP, Yang J, Zeng XY, Abdel-Aziz FA, Li WJ, Senanayake IC, Shang QJ, Daranagama DA, De Silva NI, Thambugala KM, Abdel-Wahab MA, Bahkali AH, Berbee ML, Boonmee S, Bhat DJ, Bulgakov TS, Buyck B, Camporesi E, Castañeda-Ruiz RF, Chomnunti P, Doilom M, Dovana F, Gibertoni TB, Jadan M, Jeewon R, Jones GEB, Kang JC, Karunarathna SC, Lim YW, Liu JK, Liu ZY, Plautz HL Jr, Lumyong S, Maharachchikumbura SSN, Matocˇec N, Mckenzie EHC, Meśič A, Miller D, Pawłowska J, Pereira OL, Promputtha I, Romero AI, Ryvarden L, Su HY, Suetrong S, Tkalčec Z, Vizzini A, Wen TC, Wisitrassameewong K, Wrzosek M, Xu JC, Zhao Q, Zhao RL, Mortimer PE (2017) Fungal diversity notes 603–708: taxonomic and phylogenetic notes on genera and species. Fungal Divers 87:1–235

    Google Scholar 

  • Inderbitzin P, Bostock RM, Davis RM, Usami T, Platt HW, Subbarao KV (2011) Phylogenetics and taxonomy of the fungal vascular wilt pathogen Verticillium, with the descriptions of five new species. PLoS ONE 6:e28341

    CAS  PubMed  PubMed Central  Google Scholar 

  • Issakainen J, Jalava J, Hyvönen J, Sahlberg N, Pirnes T, Campbell CK (2003) Relationships of Scopulariopsis based on LSU rDNA sequences. Med Mycol 41:31–42

    CAS  PubMed  Google Scholar 

  • Jacobs A, Msimang D, Venter E (2017) First survey of the fungi from the Bakwena Cave in South Africa suggests low human disturbance. J Cave Karst Stud 79:89–94

    Google Scholar 

  • Jayasiri SC, Hyde KD, Ariyawansa HA, Bhat J, Buyck B, Cai L, Dai YC, Abd-Elsalam KA, Ertz D, Hidayat I, Jeewon R (2015) The Faces of Fungi database: fungal names linked with morphology, phylogeny and human impacts. Fungal Divers 74:3–18

    Google Scholar 

  • Jiang JR, Cai L, Liu F (2017a) Oligotrophic fungi from a carbonate cave, with three new species of Cephalotrichum. Mycology 8:164–177

    CAS  Google Scholar 

  • Jiang JR, Chen Q, Cai L (2017b) Polyphasic characterisation of three novel species of Paraboeremia. Mycol Prog 16:285–295

    Google Scholar 

  • Jurado V, Porca E, Cuezva S (2010) Fungal outbreak in a show cave. Sci Total Environ 408:3632–3638

    CAS  PubMed  Google Scholar 

  • Kajihiro ES (1965) Occurrence of dermatophytes in fresh bat guano. Appl Microbiol 13:720–724

    CAS  PubMed  PubMed Central  Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kepler RM, Luangsa-Ard JJ, Hywel-Jones NL, Quandt CA, Sung GH, Rehner SA, Aime MC, Henkel TW, Sanjuan T, Zare R, Chen M (2017) A phylogenetically-based nomenclature for Cordycipitaceae (Hypocreales). IMA Fungus 8:335–353

    PubMed  PubMed Central  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CABI Publishing, Great Britain

    Google Scholar 

  • Koilraj AJ, Marimuthu G, Natarajan K, Saravanan S, Maran P, Hsu MJ (1999) Fungal diversity inside caves of southern India. Curr Sci 77:1081–1084

    Google Scholar 

  • Kokurewicz T, Ogórek R, Pusz W, Matkowski K (2016) Bats increase the number of cultivable airborne fungi in the “Nietoperek” bat reserve in Western Poland. Microb Ecol 72:36–48

    PubMed  PubMed Central  Google Scholar 

  • Kornerup A, Wanscher JH (1978) Methuen handbook of colour, 3rd edn. Eyre Methuen Ltd., London

    Google Scholar 

  • Kubátová A, Koukol O, Nováková A (2011) Geomyces destructans, phenotypic features of some Czech isolates. Czech Mycol 63:65–75

    Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kuzmina LY, Galimzianova NF, Abdullin SR, Ryabova AS (2012) Microbiota of the Kinderlinskaya Cave (South Urals, Russia). Microbiology 81:251–258

    CAS  Google Scholar 

  • Lagarde J (1913) Biospeologica in champignons. Archives de Zoologie Experimentale et Generale 53:277–307

    Google Scholar 

  • Langenfeld A, Blond A, Gueye S, Herson P, Nay B, Dupont J, Prado S (2011) Insecticidal cyclodepsipeptides from Beauveria felina. J Nat Prod 74:825–830

    CAS  PubMed  Google Scholar 

  • Leplat J, François A, Touron S, Galant P, Bousta F (2018) Aerobiological behavior of Paleolithic decorated caves: a comparative study of five caves in the Gard department (France). Aerobiologia 35:105–124

    Google Scholar 

  • Li Q, Csetenyi L, Paton GI, Gadd GM (2015) CaCO3 and SrCO3 bioprecipitation by fungi isolated from calcareous soil. Environ Microbiol 17:3082–3097

    CAS  PubMed  Google Scholar 

  • Link JHF (1826) Entwurf eines phytologischen Pflanzensystems nebst einer Anordnung der Kryptophyten. Abh dt Akad Wiss Berlin 1824:145–194

    Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. Mol Biol Evol 16:1799–1808

    CAS  PubMed  Google Scholar 

  • Liu F, Hu DM, Cai L (2012) Conlarium duplumascospora gen. et. sp. nov. and Jobellisia guangdongensis sp. nov. from freshwater habitats in China. Mycologia 104:1178–1186

    PubMed  Google Scholar 

  • Liu JK, Hyde KD, Jeewon R, Phillips AJ, Maharachchikumbura SS, Ryberg M, Liu ZY, Zhao Q (2017) Ranking higher taxa using divergence times: a case study in Dothideomycetes. Fungal Divers 84:75–99

    Google Scholar 

  • Lombard L, Van der Merwe NA, Groenewald JZ, Crous PW (2015) Generic concepts in Nectriaceae. Stud Mycol 80:189–245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lurie HI, Borok R (1955) Trichophyton mentagrophytes isolated from the soil of caves. Mycologia 47:506–510

    Google Scholar 

  • Lurie HI, Way M (1957) The isolation of dermatophytes from the atmosphere of caves. Mycologia 49:178–180

    Google Scholar 

  • Luttrell ES (1955) The ascostromatci Ascomycetes. Mycologia 47:511–532

    Google Scholar 

  • Lynch SC, Twizeyimana M, Mayorquin JS, Wang DH, Na F, Kayim M, Kasson MT, Thu PQ, Bateman C, Rugmanjones PF, Hulcr J, Stouthamer R, Eskalen A (2016) Identification, pathogenicity and abundance of Paracremonium pembeum sp. nov. and Graphium euwallaceae sp. nov.—two newly discovered mycangial associates of the polyphagous shot hole borer (Euwallacea sp.) in California. Mycologia 108:313–329

    PubMed  Google Scholar 

  • Malloch D (1970) New concepts in the Microascaceae illustrated by two species. Mycologia 62:727–740

    Google Scholar 

  • Malloch D, Sigler L, Hambleton S, Vanderwolf KJ, Gibas CFC, Mcalpine DF (2016) Fungi associated with hibernating bats in New Brunswick caves: the genus Leuconeurospora. Botany 94:1171–1181

    CAS  Google Scholar 

  • Man B, Wang H, Xiang X, Wang R, Yun Y, Gong I (2015) Phylogenetic diversity of culturable fungi in the Heshang Cave, central China. Front Microbial 6:1158

    Google Scholar 

  • Maran AGD, Milne LJR, Lamb D, Lamb D (1985) Frontal sinusitis caused by Myriodontium keratinophilum. Brit Med J 290:207

    CAS  Google Scholar 

  • Martínková N, Bačkor P, Bartonička T, Blažková P, Červený J, Falteisek L, Gaisler J, Hanzal V, Horacek D, Hubalek Z, Jahelkova H, Kolařik M, Korytar L, Kubatova A, Lehotska B, Lehotský R, Lucan R, Majek O, Matějů J, Řehak Z, Safař J, Tajek P, Tkadlec E, Uhrin M, Wagner J, Weinfurtova D, Zima J, Zukal J, Horacek I (2010) Increasing incidence of Geomyces destructans fungus in bats from the Czech Republic and Slovakia. PLoS ONE 5:e13853

    PubMed  PubMed Central  Google Scholar 

  • Martin-Sanchez PM, Jurado V, Porca E, Bastian F, Lacanette D, Alabouvette C, Saizjimenez C (2014) Airborne microorganisms in Lascaux cave (France). Int J Speleol 43:295–303

    Google Scholar 

  • Megušar F (1914) Oekologischen Studien an Höhlentieren. Carniola 5:63–83

    Google Scholar 

  • Min KH (1988) Fungus flora of Seongrya Cave in Korea. Trans Mycol Soc Jpn 29:479–487

    Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov, in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    PubMed  Google Scholar 

  • Mitova MM, Iliev M, Nováková A, Gorbushina AA, Groudeva VI (2017) Diversity and biocide susceptibility of fungal assemblages dwelling in the Art Gallery of Magura Cave, Bulgaria. Int J Speleol 46:67–80

    Google Scholar 

  • Morton FJ, Smith G (1963) The genera Scopulariopsls Bainier, Microascus Zukal, and Doratomyces Corda. Mycol Pap 86:1–96

    Google Scholar 

  • Munk A (1957) Danish Pyrenomycetes. A preliminary flora. Dansk botanisk Arkiv 17:1–491

    Google Scholar 

  • Nannfeldt JA (1932) Studien über die Morphologie und Systematik der nichtlichenisierten inoperculaten Discomyceten. Nova Acta Regiae Societatis Scientiarum Upsaliensis 8:1–368

    Google Scholar 

  • Nirenberg HI (1976) Untersuchungen über die morphologische und biologische differenzierung in der Fusarium-Section Liseola. Mitt Biol Bundesanst Land- u Forstwirtsch Berlin-Dahlem 169:1–117

    Google Scholar 

  • Nonaka K, Kaifuchi S, Ōmura S, Masuma R (2013) Five new Simplicillium species (Cordycipitaceae) from soils in Tokyo, Japan. Mycoscience 54:42–53

    Google Scholar 

  • Northup ED, Lavoie KH (2001) Geomicrobiology of caves: a review. Geomicrobiol J 18:199–222

    CAS  Google Scholar 

  • Nouri H, Moghimi H, Vaghei MG, Nasr S (2017) Blastobotrys persicus sp. nov., an ascomycetous yeast species isolated from cave soil. Antonie van Leeuwenhoek 111:517–524

    PubMed  Google Scholar 

  • Nováková A (2009) Microscopic fungi isolated from the Domica Cave system (Slovak Karst National Park, Slovakia). A review. Int J Speleol 38:71–82

    Google Scholar 

  • Nováková A, Savická D, Kolařík M (2015) Two novel species of the genus Trichosporon isolated from a cave environment. Czech Mycol 67:233–239

    Google Scholar 

  • Nováková A, Hubka V, Valinová Š, Kolařík M, Hillebrand-Voiculescu AM (2018) Cultivable microscopic fungi from an underground chemosynthesis-based ecosystem: a preliminary study. Folia Microbiol 63:43–55

    Google Scholar 

  • Ogórek R (2018a) Fungal Communities on rock surfaces in Demänovská Ice Cave and Demänovská Cave of Liberty (Slovakia). Geomicrobiol J 35:266–276

    Google Scholar 

  • Ogórek R (2018b) Speleomycology of air in Demänovská Cave of Liberty (Slovakia) and new airborne species for fungal sites. J Cave Karst Stud 80:153–160

    Google Scholar 

  • Ogórek R, Lejman A, Matkowski K (2013) Fungi isolated from Niedzwiedzia Cave in Kletno (Lower Silesia. Poland). Int J Speleol 42:161–166

    Google Scholar 

  • Ogórek R, Lejman A, Matkowski K (2014a) Influence of the External Environment on Airborne Fungi Isolated from a Cave. Pol J Environ Stud 23:435–440

    Google Scholar 

  • Ogórek R, Pusz W, Lejman A, Uklańska-Pusz C (2014b) Microclimate effects on number and distribution of fungi in the włodarz underground complex in the owl mountains (Góry Sowie), Poland. J Cave Karst Stud 76:146–153

    Google Scholar 

  • Ogórek R, Pusz W, Matkowski K, Pląskowska E (2014c) Assessment of abundance and species composition of filamentous fungi in the underground Rzeczka complex in Sowie Mountains (Lower Silesia, Poland). Geomicrobiol J 31:900–906

    Google Scholar 

  • Ogórek R, Dyląg M, Kozak B (2016a) Dark stains on rock surfaces in Driny Cave (Little Carpathian Mountains, Slovakia). Extremophiles 20:641–652

    PubMed  PubMed Central  Google Scholar 

  • Ogórek R, Dyląg M, Kozak B, Višńovská Z, Tančinová D (2016b) Fungi isolated and quantified from bat guano and air in Harmanecká and Driny Caves (Slovakia). J Cave Karst Stud 78:41–49

    Google Scholar 

  • Ogórek R, Dyląg M, Višńovská Z, Tančinová D, Zalewski D (2016c) Speleomycology of air and rock surfaces in Driny Cave (Lesser Carpathians, Slovakia). J Cave Karst Stud 78:119–127

    Google Scholar 

  • Ogórek R, Višňovská Z, Tančinová D (2016d) Mycobiota of underground habitats: case study of Harmanecká Cave in Slovakia. Microb Ecol 71:87–99.Orr GF, Kuehn HH, Plunkett OA (1963) A new genus of the Gymnoascaceae with swollen peridial septa. Can J Botany 41:1439–1456

    Google Scholar 

  • Ogórek R, Pusz W, Zagożdżon PP, Kozak B, Bujak H (2017) Abundance and diversity of psychrotolerant cultivable mycobiota in winter of a former aluminous shale mine. Geomicrobiol J 34:823–833

    Google Scholar 

  • Ogórek R, Kozak B, Višňovská Z, Tančinová D (2018) Phenotypic and genotypic diversity of airborne fungal spores in Demänovská Ice Cave (Low Tatras, Slovakia). Aerobiologia 34:13–28

    PubMed  Google Scholar 

  • Ogórek R, Piecuch A, Višňovská Z, Cal M, Niedźwiecka K (2019) First report on the occurence of dermatophytes of microsporum cookei clade and close affinities to paraphyton cookei in the Harmanecká Cave (Veľká Fatra Mts, Slovakia). Diversity 11:191

    Google Scholar 

  • Orr GF, Kuehn HH (1972) Notes on Gymnoascaceae. II. Some Gymnoascaceae and keratinophilic fungi from Utah. Mycologia 64:55–72

    CAS  PubMed  Google Scholar 

  • Ortiz M, Legatzki A, Neilson JW, Fryslie B, Nelson W, Wing RA, Soderlund C, Pryor BM, Maier RM (2014) Making a living while starving in the dark: metagenomic insights into the energy dynamics of a carbonate cave. ISME J 8:478–491

    CAS  PubMed  Google Scholar 

  • Out B, Boyle S, Cheeptham N (2016) Identification of fungi from soil in the Nakimu caves of Glacier National Park. J Exp Microbiol Immunol 2:26–32

    Google Scholar 

  • Page RDM (1996) TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Palenzuela J, Barea JM, Ferrol N, Fryslie B, Azconaguilar C, Oehl F (2010) Entrophospora nevadensis, a new arbuscular mycorrhizal fungus from Sierra Nevada National Park (southeastern Spain). Mycologia 102:624–632

    PubMed  Google Scholar 

  • Park M, Hong S, Shin H (2015) Lecanicillium uredinophilum sp. nov. associated with rust fungi from Korea. Mycotaxon 130:997–1005

    Google Scholar 

  • Paula CCD, Montoya QV, Meirelles LA, Farinas CS, Rodrigues A, Seleghim MHR (2019) High cellulolytic activities in filamentous fungi isolated from an extreme oligotrophic subterranean environment (Catão cave) in Brazil. An Acad Bras Cienc 91:e20180583

    PubMed  Google Scholar 

  • Pfendler S, Karimi B, Alaoui-Sosse L, Bousta F, Alaoui-Sossé B, Abdeldaim MM, Aleya L (2019) Assessment of fungi proliferation and diversity in cultural heritage: Reactions to UV-C treatment. Sci Total Environ 647:905–913

    CAS  PubMed  Google Scholar 

  • Phookamsak R, Hyde KD, Jeewon R, Bhat DJ, Jones EBG, Maharachchikumbura SSN, Raspé O, Karunarathna SC, Wanasinghe DN, Hongsanan S, Doilom M, Tennakoon DS, Machado AR, Firmino AL, Ghosh A, Karunarathna A, Mešić A, Dutta AK, Thongbai B, Devadatha B, Norphanphoun C, Senwanna C, Wei DP, Pem D, Ackah FK, Wang GN, Jiang HB, Madrid H, Lee HB, Goonasekara ID, Manawasinghe IS, Kušan I, Cano J, Gené J, Li JF, Das K, Acharya K, Raj KNA, Latha KPD, Chethana KWT, He MQ, Dueñas M, Jadan M, Martín MP, Samarakoon MC, Dayarathne MC, Raza M, Park MS, Telleria MT, Chaiwan N, Matočec N, de Silva NI, Pereira OL, Singh PN, Manimohan P, Uniyal P, Shang QJ, Bhatt RP, Perera RH, Alvarenga RLM, Nogal-Prata S, Singh SK, Vadthanarat S, Oh SY, Huang SK, Rana S, Konta S, Paloi S, Jayasiri SC, Jeon SJ, Mehmood T, Gibertoni TB, Nguyen TTT, Singh U, Thiyagaraja V, Sarma VV, Dong W, Yu XD, Lu YZ, Lim YW, Chen Y, Tkalčec Z, Zhang ZF, Luo ZL, Daranagama DA, Thambugala KM, Tibpromma S, Camporesi E, Bulgakov TS, Dissanayake AJ, Senanayake IC, Dai DQ, Tang LZ, Khan S, Zhang H, Promputtha I, Cai L, Chomnunti P, Zhao RL, Lumyong S, Boonmee S, Wen TC, Mortimer PE, Xu JC (2019) Fungal diversity notes 929–1035: taxonomic and phylogenetic contributions on genera and species of fungi. Fungal Divers 95:1–273

    Google Scholar 

  • Popkova AV, Mazina SE (2019) Microbiota of hypogean habitats in Otap Head Cave. Environ Res Eng Manag 75:71–83

    Google Scholar 

  • Popović S, Subakov Simić G, Stupar M, Unković N, Predojević D, Jovanovic J, Grbic ML (2015) Cyanobacteria, algae and microfungi present in biofilm from Božana Cave (Serbia). Int J Speleol 44:141–149

    Google Scholar 

  • Pusz W, Kita W, Weber R (2014) Microhabitat influences the occurrence of airborne fungi in copper mine in Poland. J Cave Karst Stud 76:14–19

    Google Scholar 

  • Pusz W, Ogórek R, Knapik R, Kozak B, Bujak H (2015) The occurrence of fungi in the recently discovered Jarkowicka cave in the Karkonosze Mts. (Poland). Geomicrobiol J 32:59–67

    Google Scholar 

  • Pusz W, Baturo-Cieśniewska A, Zwijacz-Kozica T (2017) Culturable Fungi in Brown Bear Cave Dens. Pol J Environ Stud 27:247–255

    Google Scholar 

  • Pusz W, Grzeszczuk J, Zagożdżon PP, Kita W (2018a) Aeromycological monitoring of disused mines in Poland. Pol J Environ Stud 27:257–266

    Google Scholar 

  • Pusz W, Król M, Zwijacz-Kozica T (2018b) Airborne fungi as indicators of ecosystem disturbance: an example from selected Tatra Mountains caves (Poland). Aerobiologia 34:111–118

    PubMed  Google Scholar 

  • Ran JC, Chen HM (1998) A survey of speleobiological studies in China. Carsologica Sinica 17:151–159

    Google Scholar 

  • Rannala B, Yang Z (1996) Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. J Mol Evol 43:304–311

    CAS  PubMed  Google Scholar 

  • Rawat S, Rautela R, Johri BN (2017) Fungal world of cave ecosystem. In: Satyanarayana T, Deshmukh SK, Johri BN (eds) Developments in fungal biology and applied mycology. Springer, Singapore, pp 99–124

    Google Scholar 

  • Raza M, Zhang ZF, Hyde KD, Diao YZ, Cai L (2019) Culturable plant pathogenic fungi associated with sugarcane in southern China. Fungal Divers 99:1–104

    Google Scholar 

  • Réblová M (2011) New insights into the systematics and phylogeny of the genus Jattaea and similar fungi of the Calosphaeriales. Fungal Divers 49:167–198

    Google Scholar 

  • Réblová M, Gams W, Seifert KA (2011) Monilochaetes and allied genera of the Glomerellales, and a reconsideration of families in the Microascales. Stud Mycol 68:163–191

    PubMed  PubMed Central  Google Scholar 

  • Réblová M, Jaklitsch WM, Réblová K, Štěpánek V (2015) Phylogenetic reconstruction of the Calosphaeriales and Togniniales using five genes and predicted RNA secondary structures of ITS, and Flabellascus tenuirostris gen. et sp. nov. PLoS ONE 10:e0144616

    PubMed  PubMed Central  Google Scholar 

  • Rehner SA, Buckley E (2005) A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences: evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 97:84–98

    CAS  PubMed  Google Scholar 

  • Rehner SA, Samuels GJ (1995) Molecular systematics of the Hypocreales: a teleomorph gene phylogeny and the status of their anamorphs. Can J Bot 31:816–823

    Google Scholar 

  • Ruibal C, Platas G, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38

    Google Scholar 

  • Saiz-Jimenez C, Miller AZ, Martin-Sanchez PM, Hernandez-Marine M (2012) Uncovering the origin of the black stains in Lascaux Cave in France. Environ Microbiol 14:3220–3231

    PubMed  Google Scholar 

  • Sandoval-Denis M, Gené J, Sutton DA, Cano-Lira JF, de Hoog GS, Decock C, Wiederhold NP, Guarro J (2016a) Redefining Microascus, Scopulariopsis and allied genera. Persoonia 36:1–36

    CAS  PubMed  Google Scholar 

  • Sandoval-Denis M, Guarro J, Cano-Lira JF, Sutton DA, Wiederhold NP, De Hoog GS, Abbott SP, Decock C, Sigler L, Gene J (2016b) Phylogeny and taxonomic revision of Microascaceae with emphasis on synnematous fungi. Stud Mycol 83:193–233

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanjuan T, Tabima J, Restrepo S, Læssøe T, Spatafora JW, Francomolano AE (2014) Entomopathogens of Amazonian stick insects and locusts are members of the Beauveria species complex (Cordyceps sensu stricto). Mycologia 106:260–275

    PubMed  Google Scholar 

  • Schüßler A, Schwarzott D, Walker C (2001) A new fungal phylum, the Glomeromycota: phylogeny and evolution. Mycol Res 105:1413–1421

    Google Scholar 

  • Seifert KA, Morgan-Jones G, Gams W, Kendrick B (2011) The genera of Hyphomycetes. CBS-KNAW Fungal Biodiversity Centre, Utrecht

    Google Scholar 

  • Selbmann L, De Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic desert. Stud Mycol 51:1–32

    Google Scholar 

  • Sharma R, Sk Singh (2013) A new species of Gymnoascus with verruculose ascospores. IMA Fungus 4:177–186

    PubMed  PubMed Central  Google Scholar 

  • Sharma R, Gräser Y, Singh SK (2013) Auxarthronopsis, a new genus of Onygenales isolated from the vicinity of Bandhavgarh National Park, India. IMA Fungus 4:89–102

    PubMed  PubMed Central  Google Scholar 

  • Sigler L, Hambleton S, Flis AL, Paré JA (2002) Auxarthron teleomorphs for Malbranchea filamentosa and Malbranchea albolutea and relationships within Auxarthron. Stud Mycol 47:111–122

    Google Scholar 

  • Silvera-Simón C, Gené J, Cano J, Guarro J (2008) Wardomycopsis litoralis, a new soil-borne hyphomycete from Spain. Mycotaxon 105:195–202

    Google Scholar 

  • Solé M, Cano J, Pitarch LB, Stchigel AM, Guarro J (2002) Molecular phylogeny of Gymnoascus and related genera. Stud Mycol 47:141–152

    Google Scholar 

  • Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313

    CAS  PubMed  PubMed Central  Google Scholar 

  • Su L, Zhu H, Guo Y, Du X, Guo J, Zhang L, Qin C (2019) Lecanicillium coprophilum (Cordycipitaceae, Hypocreales), a new species of fungus from the feces of Marmota monax in China. Phytotaxa 387:55–62

    Google Scholar 

  • Sugiyama M, Ohara A, Mikawa T (1999) Molecular phylogeny of onygenalean fungi based on small subunit ribosomal DNA (SSU rDNA) sequences. Mycoscience 40:251–258

    CAS  Google Scholar 

  • Sukarno N, Kurihara Y, Park JY, Inaba S, Ando K, Harayama S, Ilyas M, Mangunwardoyo W, Sjamsuridzal W, Yuniarti E, Saraswati R, Widyastuti Y (2009) Lecanicillium and Verticillium species from Indonesia and Japan including three new species. Mycoscience 50:369–379

    Google Scholar 

  • Sung GH, Hywel-Jones NL, Sung JM, Luangsa-ard JJ, Shrestha B, Spatafora JW (2007a) Phylogenetic classification of Cordyceps and the clavicipitaceous fungi. Stud Mycol 57:5–59

    PubMed  PubMed Central  Google Scholar 

  • Sung GH, Sung JM, Hywel-Jones NL, Spatafora JW (2007b) A multi-gene phylogeny of Clavicipitaceae (Ascomycota, Fungi): Identification of localized incongruence using a combinational bootstrap approach. Mol Phylogenet Evol 44:1204–1223

    CAS  PubMed  Google Scholar 

  • Tavares DG, Barbosa BVL, Ferreira RL, Duarte WF, Cardoso PG (2018) Antioxidant activity and phenolic compounds of the extract from pigment-producing fungi isolated from Brazilian caves. Biocatal Agric Biotechnol 16:148–154

    Google Scholar 

  • Taylor ELS, Stoianoff MADR, Ferreira RL (2013) Mycological study for a management plan of a neotropical show cave (Brazil). Int J Speleol 42:267–277

    Google Scholar 

  • Udagawa SI, Furuya K (1978) New species of Microascus and its peculiar conidial state. Mycotaxon 7:91–96

    Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF, Forbes GJ (2013) A world review of fungi, yeasts, and slime molds in caves. Int J Speleol 42:77–96

    Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF (2015) fungi associated with over-wintering tricolored bats, perimyotis subflavus, in a white-nose syndrome region of eastern Canada. J Cave Karst Stud 77:145–151

    Google Scholar 

  • Vanderwolf KJ, Malloch D, McAlpine DF (2019) No change detected in culturable fungal assemblages on cave walls in eastern Canada with the introduction of Pseudogymnoascus destructans. Diversity 11:222

    CAS  Google Scholar 

  • Vidal P, Vinuesa MDLA, Sánchez-Puelles JM, Guarro J (2000) Phylogeny of the anamorphic genus Chrysosporium and related taxa based on rDNA internal transcribed spacer sequences. Rev Iberoam Micol 17:22–29

    Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed  PubMed Central  Google Scholar 

  • Visagie CM, Yilmaz N, Vanderwolf K, Renaud JB, Sumarah MW, Houbraken J, Assebgui R, Seifert KA, Malloch DW (2019) Penicillium diversity in Canadian bat caves, including a new species, P. speluncae. Fungal Syst Evol 5:1–15

    PubMed  PubMed Central  Google Scholar 

  • Voglmayr H, Friebes G, Gardiennet A, Jaklitsch WM (2018) Barrmaelia and Entosordaria in Barrmaeliaceae (fam. nov., Xylariales) and critical notes on anthostomella-like genera based on multigene phylogenies. Mycol Prog 17:155–177

    PubMed  Google Scholar 

  • von Arx JA (1977) Notes on Gymnoascaceae. Persoonia 9:393–400

    Google Scholar 

  • Voříšková J, Baldrian P (2013) Fungal community on decomposing leaf litter undergoes rapid successional changes. ISME J 7:477–486

    PubMed  Google Scholar 

  • Wang M, Liu F, Crous PW, Cai L (2017) Phylogenetic reassessment of Nigrospora: Ubiquitous endophytes, plant and human pathogens. Persoonia 39:118–142

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wei DP, Wanasinghe DN, Hyde KD, Mortimer PE, Xu JC, Xiao Y, Bhunjun CS, Toanun C (2019) The genus Simplicillium. MycoKeys 60:69–92

    PubMed  PubMed Central  Google Scholar 

  • Wendt L, Sir EB, Kuhnert E, Heitkämper S, Lambert C, Hladki AI, Romero AI, Luangsa-ard JJ, Srikitikulchai P, Peršoh D, Stadler M (2018) Resurrection and emendation of the Hypoxylaceae, recognised from a multigene phylogeny of the Xylariales. Mycol Prog 17:115–154

    Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor JL (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press Inc., New York, pp 315–322

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Rajeshkumar KC, Hawksworth DL, Madrid H, Kirk PM, Braun U, Singh RV, Crous PW, Kukwa M, Lucking R, Kurtzman CP, Yurkov A, Haelewaters D, Aptroot A, Lumbsch HT, Timdal E, Ertz D, Etayo J, Phillips AJL, Groenewald JZ, Papizadeh M, Selbmann L, Dayarathne MC, Weerakoon G, Jones EBG, Suetrong S, Tian Q, Castanéda-Ruiz RF, Bahkali AH, Pang KL, Tanaka K, Dai DQ, Sakayaroj J, Hujslová M, Lombard L, Shenoy BD, Suija A, Maharachchikumbura SSN, Thambugala KM, Wanasinghe DN, Sharma BO, Gaikwad S, Pandit G, Zucconi L, Onofri S, Egidi E, Raja HA, Kodsueb R, Caceres MES, Perez-Ortega S, Fiuza PO, Monteiro JS, Vasilyeva LN, Shivas RG, Prieto M, Wedin M, Olariaga I, Lateef AA, Agrawal Y, Fazeli SAS, Amoozegar MA, Zhao GZ, Pfliegler WP, Sharma G, Oset M, Abdel MA, Takamatsu S, Bensch K, Silva NI, De Kesel A, Karunarathna A, Boonmee S, Pfister DH, Lu YZ, Luo ZL, Boonyuen N, Daranagama DA, Senanayake IC, Jayasiri SC, Samarakoon MC, Zeng XY, Doilom M, Quijada L, Rampadarath S, Heredia G, Dissanayake AJ, Jayawardana RS, Perera PH, Tang LZ, Phukhamsakda C, Hernández-Restrepo M, Ma XY, Tibpromma S, Gusmao LFP, Weerahewa D, Karunarathna SC (2017) Notes for genera: : Ascomycota. Fungal Divers 86:1–594

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Lumbsch HT, Liu JK, Maharachchikumbura SS, Ekanayaka AH, Tian Q, Phookamsak R (2018) Outline of Ascomycota: 2017. Fungal Divers 88:167–263

    Google Scholar 

  • Wijayawardene NN, Hyde KD, Al-Ani LKT, Tedersoo L, Haelewaters D, Aptroot A, Lumbsch HT, Bensch K, Kirk PM, Kolaříková Z, Oehl F, da Silva GA, Błaszkowski J, Castañeda-Ruiz RF, Becerra AG, Stadler M, Hawksworth DL, Thines M, Rajeshkumar KC, Zhao RL, Leontyev DV, Saxena RK, Tokarev YS, Dai DQ, Letcher PM, Stephenson SL, Ertz D, Kukwa M, Issi IV, Madrid H, Phillips AJL, Selbmann L, Pfliegler WP, Horvath E, Raja HA, Radek R, Papp V, Dima V, Ma J, Malosso E, Takamatsu S, Rambold G, Gannibal PB, Triebel D, Gautam AK, Avasthi S, Suetrong S, Timdal E, Fryar SC, Delgado G, Reblova M, Doilom M, Dolatabadi S, Pawlowska JZ, Humber RA, Kodsueb R, Sanchez-Castro I, Goto BT, Silva DKA, de Souza FA, Silva IR, Jobim K, Maia LC, Barbosa FR, Fiuza PO, Divakar PK, Shenoy BD, Somrithipol S, Lateev AA, Karunarathna SC, Tibpromma S, Mortimer PE, Wanasinghe DN, Phookamsak R, Xu J, Wang Y, Tian F, Alvarado P, Li DW, Kusan I, Matocec N, Mesic A, Tkalcec Z, Maharachchikumbura SSN, Papizadeh M, Heredia G, Wartchow F, Bakhshi M, Boehm E, Youssef N, Hustard VP, Lawrey JD, Santiago ALCMA, Bezerra JDP, Souza-Motta CM, Firmino AL, Tian Q, Houbraken J, Hongsanan S, Tanaka K, Dissanayake AJ, Monteiro JS, Grossart HP, Suija A, Weerakoon G, Etayo J, Tsurykau A, Vazquez V, Mungai P, Damm U, Li QR, Zhang H, Boonmee S, Lu YZ, Kendrick B, Brearley FQ, Motiejunaité J, Sharma B, Khare R, Gaikwad S, Wijesundara DSA, Tang LZ, He MQ, Flakus A, Rodriguez-Flakus P, Zhurbenko MP, McKenzie EHC, Bhat DJ, Liu JK, Raza M, Jeewon R, Nassonova ES, Prieto M, Jayalal RGU, Erdogdu M, Yurkov A, Schnittler M, Shchepin ON, Novozhilov YK, Silva-Filho AGS, Gentakaki E, Liu P, Cavender JC, Kang Y, Mohammad S, Zhang LF, Xu RF, Li YM, Dayarathne MC, Ekanayaka AH, Wen TC, Deng CY, Pereira OL, Navathe S, Fan XL, Dissanayake LS, Kuhnert E (2020) Outline of Fungi and fungus-like taxa. Mycosphere 11:1060–1456

    Google Scholar 

  • Xiao G, Ying SH, Zheng P, Wang ZL, Zhang S, Xie X, Shang Y, Leger RJS, Zhao G, Wang C, Feng M (2012) Genomic perspectives on the evolution of fungal entomopathogenicity in Beauveria bassiana. Sci Rep 2:483

    PubMed  PubMed Central  Google Scholar 

  • Xu L, Li Y, Biggins JB, Bowman BR, Verdine GL, Gloer JB, Alspaugh JA, Bills GF (2018) Identification of cyclosporin C from Amphichorda felina using a Cryptococcus neoformans differential temperature sensitivity assay. Appl Microbiol Biotechnol 102:2337–2350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JA, Benoit JB, Hobbs HH III, Nelson BW, Main LR, Gibas CFC (2015) The entomopathogenic fungus Beauveria caledonica, a newly identified pathogen of cave crickets (Orthoptera: Rhaphidophoridae). Speleobiology Notes 7:1–9

    Google Scholar 

  • Zamora JRC (1977) Isolation of Histoplasma capsulatum from the air in the Aguas Buenas caves, Aguas Buenas, Puerto Rico. Mycopathologia 60:163–165

    Google Scholar 

  • Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwigia 73:1–50

    Google Scholar 

  • Zare R, Gams W (2008) A revision of the Verticillium fungicola species complex and its affinity with the genus Lecanicillium. Mycol Res 112:811–824

    CAS  PubMed  Google Scholar 

  • Zhang ZF (2019) Diversity of fungi in karst caves in Southwest China. Ph.D. thesis, University of Chinese Academy of Sciences, China.

  • Zhang ZF, Cai L (2019) Substrate and spatial variables are major determinants of fungal community in karst caves in Southwest China. J Biogeogr 46:1504–1518

    Google Scholar 

  • Zhang YH, Zhu DH (2012) Large karst caves distribution and development in China. J Guilin Univ Technol 32:20–28

    Google Scholar 

  • Zhang Y, Schoch CL, Fournier J, Crous PW, De Gruyter J, Woudenberg JHC, Hirayama K, Tanaka K, Pointing SB, Spatafora JW, Hyde KD (2009) Multi-locus phylogeny of the Pleosporales: a taxonomic, ecological and evolutionary reevaluation. Stud Mycol 64:85–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Crous PW, Schoch CL, Hyde KD (2012) Pleosporales. Fungal Divers 53:1–221

    CAS  PubMed  Google Scholar 

  • Zhang T, Victor TR, Rajkumar SS, Li X, Okoniewski JC, Hicks AC, Davis AD, Broussard K, Ladeau SL, Chaturvedi S, Chaturvedi V (2014) Mycobiome of the bat white nose syndrome affected caves and mines reveals diversity of fungi and local adaptation by the fungal pathogen Pseudogymnoascus (Geomyces) destructans. PLoS ONE 9:e108714

    PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Liu F, Wu W, Cai L (2015) A phylogenetic assessment and taxonomic revision of the thermotolerant hyphomycete genera Acrophialophora and Taifanglania. Mycologia 107:768–779

    CAS  PubMed  Google Scholar 

  • Zhang YW, Chen WH, Zeng GP, Zou X, Wen TH, Han YF, Qiu SY, Liang ZQ (2016) Two new Chrysosporium (Onygenaceae, Onygenales) from China. Phytotaxa 270:210–216

    Google Scholar 

  • Zhang ZF, Liu F, Zhou X, Liu XZ, Liu SJ, Cai L (2017) Culturable mycobiota from Karst caves in China, with descriptions of 20 new species. Persoonia 39:1–31

    PubMed  PubMed Central  Google Scholar 

  • Zhang ZF, Zhao P, Cai L (2018) Origin of cave fungi. Front Microbiol 9:1407

    PubMed  PubMed Central  Google Scholar 

  • Zhaxybayeva O, Gogarten JP (2002) Bootstrap, Bayesian probability and maximum likelihood mapping: exploring new tools for comparative genome analyses. Genomics 3:1–15

    Google Scholar 

  • Zhou J, Gu Y, Zou C, Mo M (2007) Phylogenetic diversity of bacteria in an earth-cave in Guizhou Province, Southwest of China. J Microbiol 45:105–112

    CAS  PubMed  Google Scholar 

  • Zhou N, Zhang Y, Liu F, Cai L (2016) Halophilic and thermotolerant Gymnoascus species from several special environments, China. Mycologia 108:179–191

    PubMed  Google Scholar 

  • Zimmerman A (1902) Ueber einige an tropischen Kulturpflanzen beobachtete Pilze III. Zentralblatt für Bakteriologie, Parasitenkunde 8:216–221

    Google Scholar 

  • Zimmermann G (2007) Review on safety of the entomopathogenic fungi Beauveria bassiana and Beauveria brongniartii. Biocontrol Sci Technol 17:553–596

    Google Scholar 

Download references

Acknowledgements

This study was financially supported by NSFC (31725001), the Science and Technology Partnership Program, MOST (KY201701011), Gansu Foundation of Ecological Conservation & Remediation (No. 2018-20) and Gansu Foundation of Inducing Scientific Innovation for Development (No. 2017zx-10). Prof. Yuan-Hai Zhang in Institute of Karst Geology, Chinese Academy of Geological Sciences is thanked for providing caves’ information in Southwest China. Dr. Ya-Li Xi in Gansu Engineering Laboratory of Applied Mycology, Hexi University is thanked for help with sample collection. We also thank other members who provided technical support, valuable and constructive suggestions in our lab.

Author information

Authors and Affiliations

Authors

Contributions

ZFZ: Designed the work, conducted the experiment, and drafted the manuscript; SYZ: Part of the fungal isolation, and data submission; LE, SI, MR, and FL: Revised the manuscript; PZ, and QC: Help for the sample collection; LC: Conceived the work, and revised manuscript.

Corresponding author

Correspondence to Lei Cai.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 126 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, ZF., Zhou, SY., Eurwilaichitr, L. et al. Culturable mycobiota from Karst caves in China II, with descriptions of 33 new species. Fungal Diversity 106, 29–136 (2021). https://doi.org/10.1007/s13225-020-00453-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-020-00453-7

Keywords

Navigation