Skip to main content
Log in

Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations

  • Published:
Computational Particle Mechanics Aims and scope Submit manuscript

Abstract

We present an explicit incompressible smoothed particle hydrodynamics formulation with stabilized pressure distribution and its implementation in a multiple graphics processing unit environment. The pressure Poisson equation is stabilized via both pressure invariance and divergence-free conditions, and its explicit formulation is derived using the first step of the Jacobi iterative solver. Also, we show how to adapt the fixed wall ghost particle for the boundary condition into our explicit approach. Verification and validation of the method include hydrostatic and dam break numerical tests. The computational performance in the multi-GPU environment was notably high with reasonable speedup values compared to our single-GPU implementation. In particular, our code allows simulations with very large number of particles reaching up to 200 million per GPU card. Finally, to illustrate the potential of our formulation in simulating natural disasters, we present a simulation of the famous Fukushima Dai-ichi Power Plant inundation by the tsunami from The Great East Japan Earthquake in 2011, in Japan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

References

  1. Lucy LB (1977) A numerical approach to the testing of the fusion process. Astron J 88:1013–1024

    Article  Google Scholar 

  2. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Astron Soc 181:375–389. https://doi.org/10.1155/2012/139583

    Article  MATH  Google Scholar 

  3. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  4. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  5. Monaghan JJ (1988) The dynamics of interstellar cloud complexes. Mon Not R Astron Soc 231(3):515–534. https://doi.org/10.1093/mnras/231.3.515

    Article  Google Scholar 

  6. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226. https://doi.org/10.1006/jcph.1997.5776

    Article  MATH  Google Scholar 

  7. Koshizuka S, Oka Y (1996) Moving-particle semi-implicit method for fragmentation of incompressible fluid. Nucl Sci Eng 123(3):421–434

    Article  Google Scholar 

  8. Cummins SJ, Rudman M (1999) An SPH Projection method. J Comput Phys 152(2):584–607. https://doi.org/10.1006/jcph.1999.6246

    Article  MathSciNet  MATH  Google Scholar 

  9. Khayyer A, Gotoh H, Shao S (2008) Corrected incompressible SPH method for accurate water-surface tracking in breaking waves. Coast Eng 55(3):236–250

    Article  Google Scholar 

  10. Xu R, Stansby P, Laurence D (2009) Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J Comput Phys 228(18):6703–6725. https://doi.org/10.1016/j.jcp.2009.05.032

    Article  MathSciNet  MATH  Google Scholar 

  11. Lind SJ, Xy R, Stansby PK, Rogers BD (2012) Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffucion-based algorithm for stability and validations for impulsive flows and propagating waves. J Comput Phys 231(4):1499–1523. https://doi.org/10.1016/j.jcp.2011.10.027

    Article  MathSciNet  MATH  Google Scholar 

  12. Asai M, Aly AM, Sonoda Y, Sakai Y (2012) A stabilized incompressible SPH method by relaxing the density invariance condition. Int J Appl Math 2012:139583. https://doi.org/10.1155/2012/139583

    Article  MathSciNet  MATH  Google Scholar 

  13. Barcarolo DA, Le Touzé D, de Vuyst F (2014) Validation of a new fully-explicit incompressible Smoothed Particle Hydrodynamics method. Mech Eng Proc 1:1

    Google Scholar 

  14. Violeau D, Issa R (2007) Numerical modelling of complex turbulent free-surface flows with the SPH method: an overview. Int J Numer Meth Fl 53:277–304. https://doi.org/10.1002/d.1292. arXiv:hal-01097824, Wiley

    Article  MathSciNet  MATH  Google Scholar 

  15. NVIDIA Corporation (2019) PGI compilers & tools: CUDA Fortran programming guide and reference version 19.7 for x86. Last updated July 31, 2019. Retrieved from https://www.pgroup.com/resources/docs/19.7/x86/cuda-fortran-prog-guide/index.htm

  16. Kolb A, Cuntz N (2005) Dynamic particle coupling for GPU-based fluid simulation. Proc. Symp. Simul. Tech.. pp. 722-727

  17. Crespo AC, Dominguez JM, Barreiro a, Gómez-Gesteira M, Rogers BD (2011) GPUSs, a new tool of acceleration in CFD: efficiency and reliability on Smoothed Particle Hydrodynamics Methods. PLoS ONE 6(6):e20685. https://doi.org/10.1371/journal.pone.0020685

    Article  Google Scholar 

  18. Domínguez JM, Crespo AJC, Marongiu JC (2011) Neighbour lists in smoothed particle hydrodynamics. Int J Numer Methods Fluids 67:2026–2042. https://doi.org/10.1002/fld.2481

    Article  MathSciNet  MATH  Google Scholar 

  19. Domínguez JM, Crespo AJC, Gómez-Gesteira M (2013) Optimization strategies for CPU and GPU implementations of a smoothed particle hydrodynamics method. Comput Phys Commun 184:1848–1860. https://doi.org/10.1016/j.cpc.2012.10.015

    Article  Google Scholar 

  20. Herault A, Bilotta G, Dalrymple RA (2010) SPH on GPU with CUDA. J Hydraul Res 48:74–79. https://doi.org/10.1080/00221686.2010.9641247

    Article  Google Scholar 

  21. Domínguez JM, Crespo AJC, Valdez-Balderas D, Rogers BD, Gomez-Gesteira M (2013) New multi-GPU implementation for smoothed particle hydrodynamics on heterogeneous clusters. Comput Phys Commun 184(8):1848–1860

    Article  Google Scholar 

  22. Rustico E, Bilotta G, Hérault A, Del Negro C, Gallo G (2012) Advances in multi-GPU smoothed particle hydrodynamics simulations. IEEE Trans Parallel Distrib 25(1):43–52

    Article  Google Scholar 

  23. Schoenberg IJ (1964) Spline interpolation and best quadrature formulae. Bull Amer Math Soc 70(1):143–148

    Article  MathSciNet  Google Scholar 

  24. Schoenberg IJ (1946) Contributions to the problem of approximation of equidistant data by analytic functions. Q Appl Math 4:45–99

    Article  Google Scholar 

  25. Chorin AJ (1968) Numerical solution of the Navier–Stokes equations. Math Comput 22:745–762

    Article  MathSciNet  Google Scholar 

  26. Violeau D, Leroy A (2014) On the maximum time step in weakly compressible SPH. J Comput Phys 256:388–415 arXiv:hal-00946833

    Article  MathSciNet  Google Scholar 

  27. Lee ES, Moulinec C, Xu R, Violeau D, Laurence D, Stansby P (2008) Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J Comput Phys 227(18):8417–8436

    Article  MathSciNet  Google Scholar 

  28. Idris NA, Sonoda Y (2017) A multi-scale tsunami simulations based on 2D finite difference method and 3D particle method with a virtual wave maker. Kyushu University Doctoral Dissertation

  29. Morikawa DS, Asai M, Nur’Ain I, Imoto Y, Isshiki M (2019) Improvements in highly viscous fluid simulation using a fully implicit SPH method. Part Mech Comp https://doi.org/10.1007/s40571-019-00231-6

  30. Ruetsch G, Fatica M, Shao S (2013) CUDA Fortran for scientists and engineers: best practices for efficient CUDA Fortran programming. Morgan Kaufmann Publishers Inc. San Francisco, CA, USA 2013. ISBN:0124169708 9780124169708

  31. NVIDIA Corporation (2019) CUDA Toolkit Documentation v10.1.243. Last updated August 19, 2019. Retrieved from https://docs.nvidia.com/cuda/index.html

  32. Issa R, Violeau D (2006) Test 2: 3D schematic dam break and evolution of the free surface. SPHERIC: SPH rEsearch and engineeRing International Community. Retrieved from https://spheric-sph.org/tests/test-2

  33. Lee ES, Violeau D, Issa R, Ploix S (2010) Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. J Hydraul Res 48(2):50–60. https://doi.org/10.3826/jhr.2010.0003

    Article  Google Scholar 

  34. Asai M, Aly AM, Sonoda Y (2011) ISPH-FEM coupling simulator for the FSI problems. In: Proceedings of 6th international SPHERIC workshop, pp 201–208, ISBN: 978-3-89220-658-3

  35. Tokyo Electric Power Company Holding (TEPCO) (2012) Release of the Fukushima Nuclear Accidents Investigation Report. Press Release. Retrieved from https://www4.tepco.co.jp/en/press/corp-com/release/2012/1205638_1870.html

Download references

Acknowledgements

This work was supported by Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Number 17H02061 and “Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures” in Japan (Project ID: jh180060-NAH and jh180065-NAH)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Morikawa.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morikawa, D., Senadheera, H. & Asai, M. Explicit incompressible smoothed particle hydrodynamics in a multi-GPU environment for large-scale simulations. Comp. Part. Mech. 8, 493–510 (2021). https://doi.org/10.1007/s40571-020-00347-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40571-020-00347-0

Keywords

Navigation