Skip to main content
Log in

Power-Law Scaling of Turbulence Cospectra for the Stably Stratified Atmospheric Boundary Layer

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Surface turbulent fluxes provide a key boundary condition for the prediction of weather, hydrology, and atmospheric carbon dioxide. The turbulence cospectrum is assumed to typically follow a −7/3 power-law scaling, which is used for the high-frequency spectral correction of eddy-covariance data. The derivation of this scaling is mostly grounded on dimensional analysis. The dimensional analysis or cospectral budget analyses, however, can lead to alternative cospectral scaling. Here we examine the shape of turbulence cospectra at high Reynolds number and high wavenumbers based on extensive field measurements of wind velocity and temperature in various stably stratified atmospheric conditions. We show that the cospectral scaling deviates from the −7/3 scaling at high wavenumbers in the inertial subrange of the stable atmospheric boundary layer, and appears to follow a −2 power-law scaling. We suggest that −2 power-law scaling is a better alternative for cospectral corrections for eddy-covariance measurements of the stable boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117–149

    Google Scholar 

  • Andreas EL, Horst TW, Grachev AA, Persson POG, Fairall CW, Guest PS, Jordan RE (2010a) Parametrizing turbulent exchange over summer sea ice and the marginal ice zone. Q J R Meteorol Soc 136(649):927–943

    Google Scholar 

  • Andreas EL, Persson POG, Grachev AA, Jordan RE, Horst TW, Guest PS, Fairall CW (2010b) Parameterizing turbulent exchange over sea ice in winter. J Hydrometeorol 11(1):87–104

    Google Scholar 

  • Anselmet F, Gagne Y, Hopfinger E, Antonia R (1984) High-order velocity structure functions in turbulent shear flows. J Fluid Mech 140:63–89

    Google Scholar 

  • Antonia R, Van Atta C (1978) Structure functions of temperature fluctuations in turbulent shear flows. J Fluid Mech 84(3):561–580

    Google Scholar 

  • Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C (1999) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. In: Fitter AH, Raffaelli DG (eds) Advances in ecological research, vol 30. Academic Press. London, UK, pp 113–175

    Google Scholar 

  • Bos W (2014) On the anisotropy of the turbulent passive scalar in the presence of a mean scalar gradient. J Fluid Mech 744:38–64

    Google Scholar 

  • Bos W, Touil H, Shao L, Bertoglio J-P (2004) On the behavior of the velocity-scalar cross correlation spectrum in the inertial range. Phys Fluids 16(10):3818–3823

    Google Scholar 

  • Bos W, Touil H, Bertoglio J-P (2005) Reynolds number dependency of the scalar flux spectrum in isotropic turbulence with a uniform scalar gradient. Phys Fluids 17(12):125108

    Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange MB, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(11):115106

    Google Scholar 

  • Bradley EF, Antonia R, Chambers A (1981) Turbulence Reynolds number and the turbulent kinetic energy balance in the atmospheric surface layer. Boundary-Layer Meteorol 21(2):183–197

    Google Scholar 

  • Caughey S, Readings C (1975) An observation of waves and turbulence in the earth’s boundary layer. Boundary-Layer Meteorol 9(3):279–296

    Google Scholar 

  • Cava D, Katul G (2012) On the scaling laws of the velocity-scalar cospectra in the canopy sublayer above tall forests. Boundary-Layer Meteorol 145(2):351–367

    Google Scholar 

  • Conry P, Kit E, Fernando HJ (2018) Measurements of mixing parameters in atmospheric stably stratified parallel shear flow. Environ Fluid Mech 1–21

  • Cornish CR, Bretherton CS, Percival DB (2006) Maximal overlap wavelet statistical analysis with application to atmospheric turbulence. Boundary-Layer Meteorol 119(2):339–374

    Google Scholar 

  • Dougherty J (1961) The anisotropy of turbulence at the meteor level. J Atmos Terr Phys 21(2–3):210–213

    Google Scholar 

  • Fernando H, Pardyjak E, Di Sabatino S, Chow F, De Wekker S, Hoch S, Hacker J, Pace J, Pratt T, Pu Z (2015) The MATERHORN: unraveling the intricacies of mountain weather. Bull Am Meteorol Soc 96(11):1945–1967

    Google Scholar 

  • Frigo M, Johnson SG (1998) FFTW: an adaptive software architecture for the FFT. In: Proceedings of the 1998 IEEE international conference on acoustics, speech and signal processing, Seattle, WA, USA, IEEE, pp 1381–1384

  • Gargett A, Osborn T, Nasmyth P (1984) Local isotropy and the decay of turbulence in a stratified fluid. J Fluid Mech 144:231–280

    Google Scholar 

  • Grachev AA, Fairall CW, Persson POG, Andreas EL, Guest PS (2005) Stable boundary-layer scaling regimes: the SHEBA data. Boundary-Layer Meteorol 116(2):201–235

    Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2013) The critical Richardson number and limits of applicability of local similarity theory in the stable boundary layer. Boundary-Layer Meteorol 147(1):51–82

    Google Scholar 

  • Grachev AA, Andreas EL, Fairall CW, Guest PS, Persson POG (2015) Similarity theory based on the Dougherty–Ozmidov length scale. Q J R Meteorol Soc 141(690):1845–1856

    Google Scholar 

  • Gulitski G, Kholmyansky M, Kinzelbach W, Lüthi B, Tsinober A, Yorish S (2007) Velocity and temperature derivatives in high-Reynolds-number turbulent flows in the atmospheric surface layer. Part 1. Facilities, methods and some general results. J Fluid Mech 589:57–81

    Google Scholar 

  • Horst T (1997) A simple formula for attenuation of eddy fluxes measured with first-order-response scalar sensors. Boundary-Layer Meteorol 82(2):219–233

    Google Scholar 

  • Hudgins L, Friehe CA, Mayer ME (1993) Wavelet transforms and atmopsheric turbulence. Phys Rev Lett 71(20):3279

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Cote OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98(417):563–589

    Google Scholar 

  • Katul GG, Porporato A, Shah S, Bou-Zeid E (2014) Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys Rev E 89(2):023007

    Google Scholar 

  • Kit E, Liberzon D (2016) 3D-calibration of three-and four-sensor hot-film probes based on collocated sonic using neural networks. Meas Sci Technol 27(9):095901

    Google Scholar 

  • Kit E, Hocut C, Liberzon D, Fernando H (2017) Fine-scale turbulent bursts in stable atmospheric boundary layer in complex terrain. J Fluid Mech 833:745–772

    Google Scholar 

  • Kolmogorov AN (1941) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl Akad Nauk SSSR 30:299–303

    Google Scholar 

  • Kovasznay LS (1948) Spectrum of locally isotropic turbulence. J Aeronaut Sci 15(12):745–753

    Google Scholar 

  • Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open-and closed-path CO2 analysers: corrections for analyser water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53(1–2):63–76

    Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262

    Google Scholar 

  • Li D, Katul GG (2017) On the linkage between the k − 5/3 spectral and k −7/3 cospectral scaling in high-Reynolds number turbulent boundary layers. Phys Fluids 29(6):065108

    Google Scholar 

  • Li D, Katul GG, Bou-Zeid E (2015) Turbulent energy spectra and cospectra of momentum and heat fluxes in the stable atmospheric surface layer. Boundary-Layer Meteorol 157(1):1–21

    Google Scholar 

  • Li D, Salesky ST, Banerjee T (2016) Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. J Fluid Mech 797:R3

    Google Scholar 

  • Li Q, Bou-Zeid E, Vercauteren N, Parlange M (2018) Signatures of air–wave interactions over a large lake. Boundary-Layer Meteorol 167(3):445–468

    Google Scholar 

  • Lienhard JH, Van Atta CW (1990) The decay of turbulence in thermally stratified flow. J Fluid Mech 210:57–112

    Google Scholar 

  • Lumley JL (1964) The spectrum of nearly inertial turbulence in a stably stratified fluid. J Atmos Sci 21(1):99–102

    Google Scholar 

  • Lumley JL (1967) Theoretical aspects of research on turbulence in stratified flows. In: Proceedings of international colloquium atmospheric turbulence and radio wave propagation, Moscow, pp 105–110

  • Mamadou O, de la Motte LG, De Ligne A, Heinesch B, Aubinet M (2016) Sensitivity of the annual net ecosystem exchange to the cospectral model used for high frequency loss corrections at a grazed grassland site. Agric For Meteorol 228:360–369

    Google Scholar 

  • Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104(3):185–198

    Google Scholar 

  • Massman WJ, Lee X (2002) Eddy covariance flux corrections and uncertainties in long-term studies of carbon and energy exchanges. Agric For Meteorol 113(1):121–144

    Google Scholar 

  • Moncrieff JB, Massheder J, De Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Søgaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188:589–611

    Google Scholar 

  • Monin A, Yaglom A (1975) Statistical fluid mechanics: mechanics of turbulence. MIT Press, Cambridge

    Google Scholar 

  • Moore C (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37(1–2):17–35

    Google Scholar 

  • Mydlarski L (2003) Mixed velocity-passive scalar statistics in high-Reynolds-number turbulence. J Fluid Mech 475:173–203

    Google Scholar 

  • Mydlarski L, Warhaft Z (1998) Passive scalar statistics in high-Péclet-number grid turbulence. J Fluid Mech 358:135–175

    Google Scholar 

  • O’Gorman P, Pullin D (2003) The velocity-scalar cross spectrum of stretched spiral vortices. Phys Fluids 15(2):280–291

    Google Scholar 

  • O’Gorman P, Pullin D (2005) Effect of Schmidt number on the velocity-scalar cospectrum in isotropic turbulence with a mean scalar gradient. J Fluid Mech 532:111–140

    Google Scholar 

  • Obukhov A (1946) Turbulence in thermally inhomogeneous atmosphere. Trudy Inst Teor Geofiz Akad Nauk SSSR. 1:95–115

    Google Scholar 

  • Orszag SA (1970) Analytical theories of turbulence. J Fluid Mech 41(2):363–386

    Google Scholar 

  • Ozmidov R (1965) On the turbulent exchange in a stably stratified ocean. Izv Acad Sci USSR Atmos Ocean Phys 1:861–871

    Google Scholar 

  • Persson POG, Fairall CW, Andreas EL, Guest PS, Perovich DK (2002) Measurements near the Atmospheric Surface Flux Group tower at SHEBA: near-surface conditions and surface energy budget. J Geophys Res 107(C10):8045

    Google Scholar 

  • Petenko I, Argentini S, Casasanta G, Genthon C, Kallistratova M (2018) Stable surface-based turbulent layer during the polar winter at Dome C, Antarctica: sodar and in situ observations. Boundary-Layer Meteorol 171:101–128

    Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Saddoughi SG, Veeravalli SV (1994) Local isotropy in turbulent boundary layers at high Reynolds number. J Fluid Mech 268:333–372

    Google Scholar 

  • Sakai Y, Uchida K, Kubo T, Nagata K (2008) Statistical features of scalar flux in a high-Schmidt-number turbulent jet. In: Kaneda Y (ed) IUTAM symposium on computational physics and new perspectives in turbulence. Springer, Dordrecht, pp 209–214

    Google Scholar 

  • Smedman A-S (1988) Observations of a multi-level turbulence structure in a very stable atmospheric boundary layer. Boundary-Layer Meteorol 44(3):231–253

    Google Scholar 

  • Stiperski I, Calaf M (2018) Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q J R Meteorol Soc 144(712):641–657

    Google Scholar 

  • Stiperski I, Calaf M, Rotach MW (2019) Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J Geophys Res Atmos 124(3):1428–1448

    Google Scholar 

  • Sukoriansky S, Kit E, Zemach E, Midya S, Fernando H (2018) Inertial range skewness of the longitudinal velocity derivative in locally isotropic turbulence. Phys Rev Fluids 3(11):114605

    Google Scholar 

  • Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A Math Phys Eng Sci 164(919):476–490

    Google Scholar 

  • Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):61–78

    Google Scholar 

  • Townsend AA (1976) The structure of turbulent shear flow. Cambridge University Press, Cambridge

    Google Scholar 

  • Van Atta C, Chen W (1970) Structure functions of turbulence in the atmospheric boundary layer over the ocean. J Fluid Mech 44(1):145–159

    Google Scholar 

  • Vercauteren N, Bou-Zeid E, Parlange MB, Lemmin U, Huwald H, Selker J, Meneveau C (2008) Subgrid-scale dynamics of water vapour, heat, and momentum over a lake. Boundary-Layer Meteorol 128(2):205–228

    Google Scholar 

  • Vignon E, Genthon C, Barral H, Amory C, Picard G, Gallée H, Casasanta G, Argentini S (2017a) Momentum-and heat-flux parametrization at Dome C, Antarctica: a sensitivity study. Boundary-Layer Meteorol 162(2):341–367

    Google Scholar 

  • Vignon E, van de Wiel BJ, van Hooijdonk IG, Genthon C, van der Linden SJ, van Hooft JA, Baas P, Maurel W, Traullé O, Casasanta G (2017b) Stable boundary-layer regimes at Dome C, Antarctica: observation and analysis. Q J R Meteorol Soc 143(704):1241–1253

    Google Scholar 

  • Waite ML (2011) Stratified turbulence at the buoyancy scale. Phys Fluids 23(6):066602

    Google Scholar 

  • Watanabe T, Gotoh T (2007) Scalar flux spectrum in isotropic steady turbulence with a uniform mean gradient. Phys Fluids 19(12):121701

    Google Scholar 

  • Wyngaard J, Coté O (1972) Cospectral similarity in the atmospheric surface layer. Q J R Meteorol Soc 98(417):590–603

    Google Scholar 

Download references

Acknowledgements

PG would like to acknowledge funding from the National Science Foundation (NSF CAREER, EAR-1552304), and from the Department of Energy (DOE Early Career, DE-SC00142013). The lake data were collected by the Environmental Fluid Mechanics and Hydrology Laboratory of Professor M. Parlange at l’Ecole Polytechnique Fédérale de Lausanne. We would like to thank Prof. M. Parlange and Prof. Elie Bou-Zeid for sharing Lake EC data. Mountain Terrain Atmospheric Modeling and Observations (MATERHORN) program was funded by the Office of Naval Research (N00014-11-1-0709). Dome C data were acquired in the frame of the projects Mass lost in wind flux (MALOX) and Concordia multi-process atmospheric studies (COMPASS) sponsored by PNRA. Special thanks to P. Grigioni and all the staff of Antarctic Meteorological Observatory of Concordia for providing the radio sounding data used in this study, and to Dr. Igor Petenko of CNR ISAC for running the field experiment at Concordia station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Cheng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Y., Li, Q., Grachev, A. et al. Power-Law Scaling of Turbulence Cospectra for the Stably Stratified Atmospheric Boundary Layer. Boundary-Layer Meteorol 177, 1–18 (2020). https://doi.org/10.1007/s10546-020-00545-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00545-6

Keywords

Navigation