Skip to main content
Log in

Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in \(\mathbb {R}^N\)

  • Published:
Bulletin of the Brazilian Mathematical Society, New Series Aims and scope Submit manuscript

Abstract

In this work we prove the existence of ground state solutions for the following class of problems

$$\begin{aligned} \left\{ \begin{array}{ll} \displaystyle - \Delta _1 u + (1 + \lambda V(x))\frac{u}{|u|} &{} = f(u), \quad x \in \mathbb {R}^N, \\ u \in BV(\mathbb {R}^N), &{} \end{array} \right. \end{aligned}$$

where \(\lambda > 0\), \(\Delta _1\) denotes the 1-Laplacian operator which is formally defined by \(\Delta _1 u = \text{ div }(\nabla u/|\nabla u|)\), \(V:\mathbb {R}^N \rightarrow \mathbb {R}\) is a potential satisfying some conditions and \(f:\mathbb {R} \rightarrow \mathbb {R}\) is a subcritical nonlinearity. We prove that for \(\lambda > 0\) large enough there exist ground-state solutions and, as \(\lambda \rightarrow +\infty \), such solutions converges to a ground-state solution of the limit problem in \(\Omega = \text{ int }( V^{-1}(\{0\}))\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Alves, C.O., Pimenta, M.T.O.: On existence and concentration of solutions to a class of quasilinear problems involving the \(1\)-Laplace operator. Calc. Var. Partial. Differ. Equ. 56(5), 1–24 (2017)

    Article  MathSciNet  Google Scholar 

  • Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  • Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: The Dirichlet problem for the total variation flow. J. Funct. Anal. 180(2), 347–403 (2001)

    Article  MathSciNet  Google Scholar 

  • Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. C. R. Acad. Sci. Paria, Sr. I. Math. 331(11), 867–872 (2000)

    Article  MathSciNet  Google Scholar 

  • Andreu, F., Ballester, C., Caselles, V., Mazón, J.M.: Minimizing total variation flow. Differ. Integral Equ. 14(3), 321–360 (2001)

    MathSciNet  MATH  Google Scholar 

  • Andreu, F., Caselles, V., Mazón, J.M.: Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progress in Mathematics, 233. Birkhäuser Verlag, Basel (2004)

    Book  Google Scholar 

  • Anzellotti, G.: The Euler equation for functionals with linear growth. Trans. Am. Math. Soc. 290(2), 483–501 (1985)

    Article  MathSciNet  Google Scholar 

  • Anzellotti, G.: Pairings between measures and bounded functions and compensated compactness. Ann. Mat. Pura Appl. 4(135), 293–318 (1983)

    Article  MathSciNet  Google Scholar 

  • Attouch, H., Buttazzo, G., Michaille, G.: Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization. MPS-SIAM, Philadelphia (2006)

    Book  Google Scholar 

  • Bartsch, T., Wang, Z.Q.: Multiple positive solutions for a nonlinear Schrödinger equations. Z. Angew. Math. Phys. 51, 366–384 (2000)

    Article  MathSciNet  Google Scholar 

  • Bartsch, T., Pankov, A., Wang, Z.Q.: Nonlinear Schrödinger equations with steep potential well. Commun. Contemp. Math. 3, 549–569 (2001)

    Article  MathSciNet  Google Scholar 

  • Bellettini, G., Caselles, V., Novaga, M.: The total variation flow in \(\mathbb{R}^N\). J. Differ. Equ. 184, 475–525 (2002)

    Article  Google Scholar 

  • Clarke, F.: Generalized gradients and applications. Trans. Am. Math. Soc. 205, 247–262 (1975)

    Article  MathSciNet  Google Scholar 

  • Clapp, M., Ding, Y.H.: Minimal nodal solutions of a Schrödinger equation with critical nonlinearity and symmetric potential. Differ. Int. Equ. 16(8), 981–991 (2003)

    MATH  Google Scholar 

  • Demengel, F.: On some nonlinear partial differential equations involving the \(1\)-Laplacian and critical Sobolev exponent, ESAIM Control Optim. Calc. Var. 4, 667–686 (1999)

    Article  MathSciNet  Google Scholar 

  • Ding, Y., Tanaka, K.: Multiplicity of positive solutions of a nonlinear Schrödinger equation. Manuscr. Math. 112, 109–135 (2003)

    Article  Google Scholar 

  • Degiovanni, M., Magrone, P.: Linking solutions for quasilinear equations at critical growth involving the \(1\)-Laplace operator. Calc. Var. Partial Differ. Equ. 36, 591–609 (2009)

    Article  MathSciNet  Google Scholar 

  • Figueiredo, G.M., Pimenta, M.T.O.: Nehari method for locally Lipschitz functionals with examples in problems in the space of bounded variation functions. Nonlinear Differ. Equ. Appl. 25(5), 18 (2018)

    Article  MathSciNet  Google Scholar 

  • Figueiredo, G.M., Pimenta, M.T.O.: Strauss’ and Lions’ type results in \(BV(\mathbb{R}^N)\) with an application to an \(1\)-Laplacian problem. Milan J. Math. 1, 15–30 (2018)

    Article  Google Scholar 

  • Figueiredo, G.M., Pimenta, M.T.O.: Existence of bounded variation solutions for a 1-Laplacian problem with vanishing potentials. J. Math. Anal. Appl. 459(2), 861–878 (2018)

    Article  MathSciNet  Google Scholar 

  • Latorre, M., Segura de León, S.: Existence and comparison results for an elliptic equation involving the \(1\)-Laplacian and \(L^1\)-data. J. Evol. Equ. 18, 1–28 (2018)

    Article  MathSciNet  Google Scholar 

  • Mazón, J.M., Segura de León, S.: The Dirichlet problem for a singular elliptic equation arising in the level set formulation of the inverse mean curvature flow. Adv. Calc. Var. 6, 123–164 (2013)

    Article  MathSciNet  Google Scholar 

  • Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43, 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  • Stuart, C.A., Zhou, H.S.: Global branch of solutions for non-linear Schrödinger equations with deepening potential well. Proc. Lond. Math. Soc. 92, 655–681 (2006)

    Article  Google Scholar 

  • Sato, Y., Tanaka, K.: Sign-changing multi-bump solutions for nonlinear Schrödinger equations with steep potential wells. Trans. Am. Math. Soc. 361, 6205–6253 (2009)

    Article  Google Scholar 

  • Wang, Z., Zhou, H.S.: Positive solutions for nonlinear Schrödinger equations with deepening potential well. J. Eur. Math. Soc. 11, 545–573 (2009)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for careful reading the manuscript and by drawing their attention to crucial references on the 1-Laplacian operator. C.O.Alves was partially supported by CNPq/Brazil 304804/2017-7. G. M. Figueiredo is supported by CNPq and FAPDF. M.T.O. Pimenta is supported by FAPESP 2019/14330-9 and CNPq 303788/2018-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudianor O. Alves.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alves, C.O., Figueiredo, G.M. & Pimenta, M.T.O. Existence and Profile of Ground-State Solutions to a 1-Laplacian Problem in \(\mathbb {R}^N\). Bull Braz Math Soc, New Series 51, 863–886 (2020). https://doi.org/10.1007/s00574-019-00179-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00574-019-00179-4

Keywords

Mathematics Subject Classification

Navigation