Skip to main content
Log in

Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid

  • Published:
Zeitschrift für angewandte Mathematik und Physik Aims and scope Submit manuscript

Abstract

This paper aims to clarify the homogenization results of the fluid–structure interaction in porous structures under the quasi-static and dynamic loading regimes. In the latter case, the acoustic fluctuations yield naturally a linear model which can be introduced in the configuration deformed as the consequence of the steady permanent flow. We consider a Newtonian slightly compressible fluid under the barotropic acoustic approximation. In contrast with usual simplifications, the advection phenomenon of the Navier–Stokes equations is accounted for. The homogenization results are based on the periodic unfolding method combined with the asymptotic expansion technique which provide a straight procedure leading the local problems for corrector functions yielding the effective model parameters and the macroscopic model. We show that the local problems for the solid and fluid parts are decoupled even in the dynamic interactions including the wall shear stress on the periodic interfaces. The dynamic permeability depends on the fluid flow properties including the advection effects associated with an assumed stationary perfusion of the porous structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Allaire, G.: Homogenization of the Navier–Stokes equations in open sets perforated with tiny holes I. Abstract framework, a volume distribution of holes. Ration. Mech. Anal. 113, 209–259 (1991)

    Article  MathSciNet  Google Scholar 

  2. Allaire, G.: Homogenization of the unsteady Stokes equations in porous media. In: Bandle, C., Bemelmans, J., Chipot, M., Grüter, M., Saint Jean Paulin, J. (eds.) Progress in Partial Differential Equations: Calculus of Variations, Applications. Volume 296 of Pitman Research Notes in Mathematics Series, pp. 109–123. Longman Scientific & Technical, Harlow (1992)

  3. Amaziane, B., Goncharenko, M., Pankratov, L.: Homogenization of a convection-diffusion equation in perforated domains with a weak adsorption. Z. Angew. Math. Phys. 58, 592–611 (2007)

    Article  MathSciNet  Google Scholar 

  4. Auriault, J., Boutin, C.: Deformable porous media with double porosity. III: acoustics. Transp. Porous Med. 14, 143–162 (1994)

    Article  Google Scholar 

  5. Auriault, J.-L., Boutin, C., Geindreau, C.: Homogenization of Coupled Phenomena in Heterogenous Media. Wiley, London (2009)

    Book  Google Scholar 

  6. Avellaneda, M., Torquato, S.: Rigorous link between fluid permeability, electrical conductivity, and relaxation times for transport in porous media. Phys. Fluids A Fluid Dyn. 3(11), 2529–2540 (1991)

    Article  MathSciNet  Google Scholar 

  7. Biot, M.A.: General theory of three-dimensional consolidation. J. Appl. Phys. 12, 155–164 (1941)

    Article  Google Scholar 

  8. Biot, M.A.: Theory of elasticity and consolidation for a porous anisotropic solid. J. Appl. Phys. 26(2), 182–185 (1955)

    Article  MathSciNet  Google Scholar 

  9. Bourgeat, A., Marušić-Paloka, E., Mikelić, A.: Weak nonlinear corrections for Darcy’s law. Math. Models Methods Appl. Sci. 06(08), 1143–1155 (1996)

    Article  MathSciNet  Google Scholar 

  10. Boutin, C., Geindreau, C.: Estimates and bounds of dynamic permeability of granular media. J. Acoust. Soc. Am. 124(6), 3576–3593 (2008)

    Article  Google Scholar 

  11. Brown, D., Popov, P., Efendiev, Y.: Effective equations for fluid-structure interaction with applications to poroelasticity. Appl. Anal. 93(4), 771–790 (2014)

    Article  MathSciNet  Google Scholar 

  12. Burridge, R., Keller, J.: Biot’s poroelasticity equations by homogenization. In: Burridge, R., Childress, S., Papanicolaou, G. (eds.) Macroscopic Properties of Disordered Media, pp. 51–57. Springer, Berlin (1982)

    Chapter  Google Scholar 

  13. Carcione, J.: Wave Fields in Real Media. Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media, Third Edition, Extendedand Revised Edition. Vol. 38 of Handbook of Geophysical Exploration. Section I. Seismic Exploration. Elsevier, Amsterdam (2014)

    Google Scholar 

  14. Chen, Z., Lyons, S., Qin, G.: Derivation of the Forchheimer law via homogenization. Transp. Porous Media 44, 325–335 (2001)

    Article  MathSciNet  Google Scholar 

  15. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. J. Math. Anal. SIAM 40(4), 1585–1620 (2008)

    Article  MathSciNet  Google Scholar 

  16. Cioranescu, D., Damlamian, A., Griso, G.: The periodic unfolding method in homogenization. SIAM J. Math. Anal. 40(4), 1585–1620 (2008)

    Article  MathSciNet  Google Scholar 

  17. Cioranescu, D., Damlamian, A., Griso, G.: The Periodic Unfolding Method; Theory and Applications to Partial Differential Problems. Series in Contemporary Mathematics, vol. 3. Springer, New York (2018)

    Book  Google Scholar 

  18. Clopeau, T., Ferrín, J., Gilbert, R., Mikelić, A.: Homogenizing the acoustic properties of the seabed, part II. Math. Comput. Model. 33, 821–841 (2001)

    Article  Google Scholar 

  19. Ferrín, J., Mikelić, A.: Homogenizing the acoustic properties of a porous matrix containing an incompressible inviscid fluid. Math. Methods Appl. Sci. 26, 831–859 (2003)

    Article  MathSciNet  Google Scholar 

  20. Gilbert, R., Panchenko, A.: Effective acoustic equations for a two-phase medium with microstructure. Math. Comput. Model. 39, 1431–1448 (2004)

    Article  MathSciNet  Google Scholar 

  21. Hornung, U.: Homogenization and Porous Media. Springer, Berlin (1997)

    Book  Google Scholar 

  22. Johnson, D., Koplik, J., Dashen, R.: Theory of dynamic permeability and tortuosity in fluid-saturated porous media. J. Fluid Mech. 176, 379–402 (1987)

    Article  Google Scholar 

  23. Laschet, G.: Forchheimer law derived by homogenization of gas flow in turbomachines. J. Comput. Appl. Math. 215, 467–476 (2008)

    Article  MathSciNet  Google Scholar 

  24. Masmoudi, N.: Homogenization of the compressible Navier–Stokes equations in a porous medium. ESAIM: Control Optim. Calc. Var. 8, 885–906 (2002)

    MathSciNet  MATH  Google Scholar 

  25. Mei, C.C., Auriault, J.-L.: The effect of weak inertia on flow through a porous medium. J. Fluid Mech. 222, 647–663 (1991)

    Article  MathSciNet  Google Scholar 

  26. Mikelic, A.: Homogenization of nonstationary Navier–Stokes equations in a domain with a grained boundary. Annali di Matematica Pura ed Applicata 158, 167–179 (1991)

    Article  MathSciNet  Google Scholar 

  27. Mikelic, A., Paoli, L.: Homogenization of the inviscid incompressible fluid flow through a 2D porous medium. Proc. Am. Math. Soc. 127(7), 2019–2028 (1999)

    Article  Google Scholar 

  28. Miroshnikova, E.: Some new results in homogenization of flow in porous media with mixed boundary condition. Ph.D. thesis, Lulea University of Technology, graphic production (2016)

  29. Nguyen, V.-H., Rohan, E., Naili, S.: Multiscale simulation of acoustic waves in homogenized heterogeneous porous media with low and high permeability contrasts. Int. J. Eng. Sci. 101, 92–109 (2016)

    Article  Google Scholar 

  30. Norris, A.: On the viscodynamic operator in Biot’s equations of poroelasticity. J. Wave Mater. Interact. 1, 365–380 (1986)

    Google Scholar 

  31. Peszyńska, M., Trykozko, A.: Forchheimer law in computational and experimental studies of flow through porous media at porescale and mesoscale. In: Current Advances in Nonlinear Analysis and Related Topics. Volume 32 of GAKUTO International Series, pp. 463–482 (2010)

  32. Poliševski, D.: Homogenization of Navier–Stokes model: the dependence upon parameters. Z. Angew. Math. Phys. 40, 387–394 (1989)

    Article  MathSciNet  Google Scholar 

  33. Rohan, E., Lukeš, V.: Modeling nonlinear phenomena in deforming fluid-saturated porous media using homogenization and sensitivity analysis concepts. Appl. Math. Comput. 267, 583–595 (2015)

    Article  MathSciNet  Google Scholar 

  34. Rohan, E., Naili, S., Lemaire, T.: Double porosity in fluid-saturated elastic media: deriving effective parameters by hierarchical homogenization of static problem. Contin. Mech. Thermodyn. 28, 1–31 (2015)

    MathSciNet  MATH  Google Scholar 

  35. Rohan, E., Shaw, S., Whiteman, J.: Poro-viscoelasticity modelling based on upscaling quasistatic fluid-saturated solids. Comput. Geosci. 18(5), 883–895 (2014)

    Article  MathSciNet  Google Scholar 

  36. Rohan, E., Turjanicová, J., Lukeš, V.: The Biot–Darcy–Brinkman model of flow in deformable double porous media; homogenization and numerical modelling. Comput. Math. Appl. 78(9), 3044–3066 (2019)

    Article  MathSciNet  Google Scholar 

  37. Sanchez-Palencia, E.: Non-homogeneous Media and Vibration Theory. No. 127 in Lecture Notes in Physics. Springer, Berlin (1980)

    Google Scholar 

  38. Shaw, S., Whiteman, J.: Some partial differential volterra equation problems arising in viscoelasticity. In: Agarwal, R., Neuman, F., Vosmanský, J. (Eds.), Proceedings of Equadiff 9, Conference on Differential Equations and Their Applications. Brno, pp. 183–200 (1998)

  39. Zaki, R.: Homogenization of a Stokes problem in a porous medium by the periodic unfolding method. Asymptot. Anal. 79(3–4), 229–250 (2012)

    Article  MathSciNet  Google Scholar 

  40. Zhengan, Y., Hongxing, Z.: Homogenization of a stationary Navier–Stokes flow in porous medium with thin film. Acta Math. Sci. 28B(4), 963–974 (2008)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduard Rohan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research has been supported by projects GACR 17-01618S and GACR 19-04956S of the Scientific Foundation of the Czech Republic and, in a part, by the project LO 1506 of the Czech Ministry of Education, Youth and Sports. The work was also supported from European Regional Development Fund-Project “Application of Modern Technologies in Medicine and Industry” (No. CZ.02.1.01/0.0/0.0/17_048/0007280). A part of the work was done during the first author stay at the University of Paris-Est with the support of the “Université Paris-Est Créteil”.

Appendices

Appendix A: Basics of the homogenization by the unfolding operator method

The homogenization results were obtained by the periodic unfolding method, see [16]. To introduce the periodic unfolding operator, a domain is needed, containing the “entire” periods \(\varepsilon Y\) only:

$$\begin{aligned} \hat{\varOmega }^\varepsilon = \text{ interior } \bigcup _{\zeta \in \varXi ^\varepsilon } \overline{Y}^{\varepsilon ,\zeta }, \quad Y^{\varepsilon ,\zeta }= \varepsilon ({Y} + \zeta ) , \end{aligned}$$
(A.1)

where \( \varXi ^\varepsilon = \{\zeta \in {\mathbb {Z}}^3\,|\; Y^{\varepsilon ,\zeta } \subset \varOmega \}\), By the construction of the periodic lattice \(\hat{\varOmega }^\varepsilon \), a small boundary neighbourhood \(\varLambda ^\varepsilon =\varOmega {\setminus }\hat{\varOmega }^\varepsilon \) vanishes with \(\varepsilon \rightarrow 0\), For all \(z \in {\mathbb {R}}^3\), let [z] be the unique integer such that \(z- [z] \in Y\). Since \(z = [z]+\{z\}\) for all \(z\in {\mathbb {R}}^3\), for all \(\varepsilon >0\), the unique decomposition holds,

$$\begin{aligned} x = \varepsilon \left( \left[ \frac{x}{\varepsilon }\right] + \left\{ \frac{x}{\varepsilon }\right\} \right) = \xi + \varepsilon y \quad \forall x \in {\mathbb {R}}^3,\quad \xi = \varepsilon \left[ \frac{x}{\varepsilon }\right] . \end{aligned}$$
(A.2)

Based on this decomposition, the periodic unfolding operator \({\mathcal {T}}_{\varepsilon }\,{}: L^2(\varOmega ;{\mathbb {R}}) \rightarrow L^2(\varOmega \times Y;{\mathbb {R}})\) is defined as follows: for any function \(v \in L^1(\varOmega ;{\mathbb {R}})\), extended to \(L^1({\mathbb {R}}^3;{\mathbb {R}})\) by zero outside \(\varOmega \), i.e. \(v=0\) in \({\mathbb {R}}^3 {\setminus } \varOmega \),

$$\begin{aligned} {{\mathcal {T}}}_{\varepsilon }{\left( {v}\right) }(x,y) =\left\{ \begin{array}{ll} v\left( \varepsilon \displaystyle \left[ \frac{x}{\varepsilon }\right] + \varepsilon y \right) , &{}\quad x \in \hat{\varOmega }^\varepsilon , y \in Y, \\ 0 &{}\quad \text{ otherwise } . \\ \end{array}\right. \end{aligned}$$

By virtue of (A.2), \({{\mathcal {T}}}_{\varepsilon }{\left( {\nabla u}\right) } = \varepsilon ^{-1}\nabla _y {{\mathcal {T}}}_{\varepsilon }{\left( {u}\right) }\). For product of any u and v the unfolding yields \({{\mathcal {T}}}_{\varepsilon }{\left( {uv}\right) }={{\mathcal {T}}}_{\varepsilon }{\left( {u}\right) }{{\mathcal {T}}}_{\varepsilon }{\left( {v}\right) }\). The following integration formula holds:

$$\begin{aligned} \int \limits _{\hat{\varOmega }^\varepsilon } v\,\mathrm{d}x = \frac{1}{|Y|}\int \limits _{\varOmega \times Y} {{\mathcal {T}}}_{\varepsilon }{\left( {v}\right) }\,\mathrm{d}y\,\mathrm{d}x\quad \forall v \in L^1(\varOmega ), \end{aligned}$$

which is employed to treat the variational formulations. Further details, namely the convergence results, further properties and various extensions have been reported in [17].

Appendix B: Limit mass conservation

Using the truncated expansions (4.11) we provide limit expressions of selected terms involved in the weak formulation (4.7)–(4.8). In the mass conservation (4.7)\(_2\), the advection-related term \(q^\varepsilon \bar{{\textit{\textbf{w}}}}^\varepsilon \cdot \nabla \widetilde{p}^\varepsilon = \varepsilon \bar{{\textit{\textbf{w}}}} \cdot (\nabla _x p^0 + \nabla _y p^1) (q^0 + \varepsilon q^1)\) vanishes with \(\varepsilon \rightarrow 0\). Recalling \(\partial \varOmega _f^\varepsilon = \partial \varOmega \cup \varGamma ^\varepsilon \), we integrate by parts the divergence term, which then converges, as follows:

(B.1)

Above, the last two integrals are obtained due to

(B.2)

Using (B.1), in the limit \(\varepsilon \rightarrow 0\), the mass conservation (4.7)\(_2\) yields

(B.3)

where, in the last row, expressions involving \(\dot{{\textit{\textbf{u}}}}^0\) and \(q^1\) cancel; hence the limit mass conservation (4.17)\(_{2,3}\) is proved.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rohan, E., Naili, S. Homogenization of the fluid–structure interaction in acoustics of porous media perfused by viscous fluid. Z. Angew. Math. Phys. 71, 137 (2020). https://doi.org/10.1007/s00033-020-01361-1

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1007/s00033-020-01361-1

Keywords

Mathematics Subject Classification

Navigation