Skip to main content
Log in

The divisor function on residue classes III

  • Published:
The Ramanujan Journal Aims and scope Submit manuscript

Abstract

Let \(n, q, a\in \mathbb N\), d(n) the number of positive divisors of n, and A(xqa) the sum of d(n) over \(n\le x\) and \(n\equiv a\pmod q\). Previously we obtained an asymptotic formula for the second moment

$$\begin{aligned} V(x,Q) = \sum _{q\le Q}\sum _{a=1}^q \left| A(x,q,a)-M(x,q,a)\right| ^2, \end{aligned}$$

where \(Q\le x\) and M(xqa) is a usual expected value for A(xqa). In this article, we compute the second moment similar to the previous one but M(xqa) is replaced by a better approximating function \(\rho _R(x,q,a)\) given by

$$\begin{aligned} \rho _R(x,q,a) = \sum _{\begin{array}{c} n\le x\\ n\equiv a(\bmod \, q) \end{array}}\sum _{r\le R}\frac{c_r(n)}{r}\left( \log \frac{n}{r^2}+2\gamma \right) , \end{aligned}$$

where \(c_r(n)\) is Ramanujan’s sum. The advantage of using \(\rho _R(x,q,a)\) instead of M(xqa) is that the new second moment, for a suitable R, gives us practically the same main term and the error term of smaller or the same order of magnitude with much simpler and shorter calculation than that of V(xQ).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Apostol, T.M.: Introduction to Analytic Number Theory. Springer, Berlin (1976)

    MATH  Google Scholar 

  2. Baillie, R.: Experiments with zeta zeros and Perron’s formula, preprint

  3. Banks, W., Heath-Brown, D.R., Shparlinski, I.: On the average value of divisor sums in arithmetic progressions. Int. Math. Res. Not. IMRN 2005, 1–25 (2005)

    MathSciNet  MATH  Google Scholar 

  4. Barban, M.B.: The large sieve method and its applications in the theory of numbers. Russ. Math Surv. 21, 49–103 (1966)

    MathSciNet  MATH  Google Scholar 

  5. Blomer, V.: The average value of divisor sums in arithmetic progressions. Q. J. Math. 59, 275–286 (2008)

    MathSciNet  MATH  Google Scholar 

  6. Chace, C.E.: The divisor problem for arithmetic progressions with small modulus. Acta Arith. 61, 35–50 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Davenport, H., Halberstam, H.: Primes in arithmetic progressions. Mich. Math. J. 13, 485–489 (1966)

    MathSciNet  MATH  Google Scholar 

  8. Fouvry, E., Iwaniec, H.: The divisor function over arithmetic progressions. With an appendix by Nicholas. Katz, Acta Arith. 61, 271–287 (1992)

    MATH  Google Scholar 

  9. Friedlander, J.B., Goldston, D.A.: Variance of the distribution of primes in residue classes. Q. J. Math. Oxford Ser. 2(47), 313–336 (1996)

    MathSciNet  MATH  Google Scholar 

  10. Friedlander, J.B., Iwaniec, H.: The divisor problem for arithmetic progressions. Acta Arith. 45, 273–277 (1985)

    MathSciNet  MATH  Google Scholar 

  11. Friedlander, J.B., Iwaniec, H.: Incomplete Kloosterman sums and a divisor problem, With an appendix by Bryan J. Birch and Enrico Bombieri. Ann. Math. 121, 319–344 (1985)

    MathSciNet  MATH  Google Scholar 

  12. Gallagher, P.X.: The large sieve. Mathematika 14, 14–20 (1967)

    MathSciNet  MATH  Google Scholar 

  13. Goldston, D.A., Vaughan, R.C.: On the Montgomery–Hooley asymptotic formula, in Sieve Methods, Exponential Sums, and their Applications in Number Theory (Cardiff, 1995). Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Heath-Brown, D.R.: The divisor function \(d_3(n)\) in arithmetic progressions. Acta Arith. 47, 29–56 (1986)

    MathSciNet  MATH  Google Scholar 

  15. Hooley, C.: On the Barban–Davenport–Halberstam theorem. I. J. Reine Angrew. Math. 274/275, 206–223 (1975)

    MathSciNet  MATH  Google Scholar 

  16. Hooley, C.: On the Barban–Davenport–Halberstam theorem. II. J. Lond. Math. Soc. 9, 625–636 (1975)

    MathSciNet  MATH  Google Scholar 

  17. Hooley, C.: On the Barban–Davenport–Halberstam theorem. III. J. Lond. Math. Soc. 10, 249–256 (1975)

    MathSciNet  MATH  Google Scholar 

  18. Hooley, C.: On the Barban–Davenport–Halberstam theorem. IX. Acta Arith. 83, 17–30 (1998)

    MathSciNet  MATH  Google Scholar 

  19. Hooley, C.: On the Barban–Davenport–Halberstam theorem. X. Hardy-Ramanujan J. 21, 2–11 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Hooley, C.: On the Barban–Davenport–Halberstam theorem. XIV. Acta Arith. 101, 247–292 (2002)

    MathSciNet  MATH  Google Scholar 

  21. Hooley, C.: On the Barban–Davenport–Halberstam theorem. XVIII. Ill. J. Math. 49, 581–643 (2005)

    MathSciNet  MATH  Google Scholar 

  22. Hooley, C.: On the Barban–Davenport–Halberstam theorem. XIX. Hardy-Ramanujan J. 30, 56–67 (2007)

    MathSciNet  MATH  Google Scholar 

  23. Huxley, M.N.: Exponential sums and lattice points II. Proc. Lond. Math Soc. 66, 279–301 (1993)

    MathSciNet  MATH  Google Scholar 

  24. Jia, C., Sankaranarayanan, A.: The mean square of the divisor function. Acta Arith. 164, 181–208 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Khan, R.: The divisor function in arithmetic progressions modulo prime powers. Mathematika 62, 898–908 (2016)

    MathSciNet  MATH  Google Scholar 

  26. Kreyszig, E.: Introductory Functional Analysis with Application. Wiley, Chichester (1978)

    MATH  Google Scholar 

  27. Lang, S.: Linear Algebra, 3rd edn. Springer, Berlin (1987)

    MATH  Google Scholar 

  28. Liu, K., Shparlinski, I., Zhang, T.: Divisor problem in arithmetic progressions modulo a prime power. Adv. Math. 325, 459–481 (2018)

    MathSciNet  MATH  Google Scholar 

  29. Matsumoto, K.: A remark on Smith’s result on a divisor problem in arithmetic progressions. Nagoya Math. J. 98, 37–42 (1985)

    MathSciNet  MATH  Google Scholar 

  30. Montgomery, H.L.: Primes in arithmetic progressions. Mich. Math. J. 17, 33–39 (1970)

    MathSciNet  MATH  Google Scholar 

  31. Montgomery, H.L.: The analytic principle of the large sieve. Bull. Am. Math. Soc. 84, 547–567 (1978)

    MathSciNet  MATH  Google Scholar 

  32. Montgomery, H.L., Vaughan, R.C.: Hilbert’s inequality. J. Lond. Math. Soc. 2(8), 73–82 (1974)

    MathSciNet  MATH  Google Scholar 

  33. Montgomery, H.L., Vaughan, R.C.: The large sieve. Mathematika 20, 119–134 (1973)

    MathSciNet  MATH  Google Scholar 

  34. Motohashi, Y.: On the distribution of the divisor function in arithmetic progressions. Acta Arith. 22, 175–199 (1973)

    MathSciNet  MATH  Google Scholar 

  35. Pongsriiam, P.: The distribution of the divisor function in arithmetic progressions, Ph.D. Thesis, The Pennsylvania State University (2012)

  36. Pongsriiam, P., Vaughan, R.C.: The divisor function on residue classes I. Acta Arith. 168, 369–381 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Pongsriiam, P., Vaughan, R.C.: The divisor function on residue classes II. Acta Arith. 182, 133–181 (2018)

    MathSciNet  MATH  Google Scholar 

  38. Smith, R.A.: The generalized divisor problem over arithmetic progressions. Math. Ann. 260, 255–268 (1982)

    MathSciNet  MATH  Google Scholar 

  39. Vaughan, R.C.: On a variance associated with the distribution of general sequences in arithmetic progressions I. Phil. Trans. R. Soc. Lond. A 356, 781–791 (1998)

    MathSciNet  MATH  Google Scholar 

  40. Vaughan, R.C.: On a variance associated with the distribution of general sequences in arithmetic progressions II. Phil. Trans. R. Soc. Lond. A 356, 793–809 (1998)

    MathSciNet  MATH  Google Scholar 

  41. Vaughan, R.C.: Moments for primes in arithmetic progressions. I. Duke Math. J 120, 371–383 (2003)

    MathSciNet  MATH  Google Scholar 

  42. Vaughan, R.C.: Moments for primes in arithmetic progressions. II. Duke Math. J. 120, 385–403 (2003)

    MathSciNet  MATH  Google Scholar 

  43. Wilson, B.: Proofs of some formulae enunciated by Ramanujan. Proc. Lond. Math. Soc. 21, 235–255 (1923)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author received financial support jointly from the Thailand Research Fund and Faculty of Science, Silpakorn University, grant number RSA5980040. The second author is supported in part by NSA grant number H98230-12-1-0276.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prapanpong Pongsriiam.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pongsriiam, P., Vaughan, R.C. The divisor function on residue classes III. Ramanujan J 56, 697–719 (2021). https://doi.org/10.1007/s11139-020-00288-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11139-020-00288-5

Keywords

Mathematics Subject Classification

Navigation