Skip to main content
Log in

Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

In this study, the Schrödinger equation (SE) with screened Kratzer potential (SKP) in the presence of external magnetic and AB-flux fields is investigated using the factorization method. The eigenvalue and eigenfunction for the system are obtained in closed form. It is found that the presence of the magnetic field partially removes the degeneracy when the screening parameter of the potential was small (α = 0.005) but the addition of the AB field removed the degeneracy faster and better. The magnetization and magnetic susceptibility of the system are evaluated at zero and finite temperatures and other thermodynamic properties of the system are discussed. More so, the presence of the AB-flux field makes the system to exhibit a both a paramagnetic and diamagnetic behavior. A straight forward extension of these results to three dimension shows that the present result is consistent with those obtained in literature.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.O. Edet, U.S. Okorie, A.T. Ngiangia, A.N. Ikot, Indian J. Phys. 94, 425 (2020)

    ADS  Google Scholar 

  2. U.S. Okorie, A.N. Ikot, C.O. Edet, I.O. Akpan, R. Sever, R. Rampho, J. Phys. Commun. 3, 095015 (2019)

    Google Scholar 

  3. W. Greiner, Relativistic Quantum Mechanics: Wave Equations (Springer, Berlin, 2000)

  4. C.O. Edet, K.O. Okorie, H. Louis, N.A. Nzeata-Ibe, Indian J. Phys. 94, 243 (2020)

    ADS  Google Scholar 

  5. U.S. Okorie, E.E. Ibekwe, M.C. Onyeaju, A.N. Ikot, Eur. Phys. J. Plus 133, 433 (2018)

    Google Scholar 

  6. U.S. Okorie, E.E. Ibekwe, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, J. Korean Phys. Soc. 73, 1211 (2018)

    ADS  Google Scholar 

  7. P.A. Dirac, The Principles of Quantum Mechanics (Oxford University Press, USA, 1958)

  8. L.I. Schiff, Quantum Mechanics (McGraw Hill, New York, 1995)

  9. C.O. Edetand, P.O. Okoi, Rev. Mex. Fis. 65, 333 (2019)

    Google Scholar 

  10. L.D. Landau, E.M. Lifshitz, Quantum Mechanics: Non-Relativistic Theory (Pergamon, New York, 1977)

  11. A.N. Ikot, U.S. Okorie, R. Sever, G.J. Rampho, Eur. Phys. J. Plus 134, 386 (2019)

    Google Scholar 

  12. C. Berkdemir, A. Berkdemir, J. Han, Chem. Phys. Lett. 417, 326 (2006)

    ADS  Google Scholar 

  13. A. Kratzer, Z. Phys. 3, 289 (1920)

    ADS  Google Scholar 

  14. M. Hamzavi, M. Movahedi, K.-E. Thylwe, A.A. Rajabi, Chin. Phys. Lett. 29, 080302 (2012)

    ADS  Google Scholar 

  15. H. Yukawa, Proc. Phys. Math. Soc. Jpn. 17, 48 (1935)

    Google Scholar 

  16. R.L. Liboff, Introductory Quantum Mechanics, 4th edition (Addison Wesley, San Francisco, CA, 2003)

  17. M. Hamzavi, S.M. Ikhdair, B.I. Ita, Phys. Scr. 85, 045009 (2012)

    ADS  Google Scholar 

  18. C.O. Edet, P.O. Okoi, S.O. Chima, Rev. Bras. Ensino Fis. 42, e20190083 (2020)

    Google Scholar 

  19. J.F.O. de Souza, C.A. de Lima Ribeiro, C. Furtado, Phys. Lett. A 378, 2317 (2014)

    ADS  Google Scholar 

  20. C. Filgueiras, M. Rojas, G. Aciole, E.O. Silva, Phys. Lett. A 380, 3847 (2016)

    ADS  MathSciNet  Google Scholar 

  21. N. Ferkous, A. Boultif, M. Sifour, Eur. Phys. J. Plus 134, 258 (2019)

    Google Scholar 

  22. A. Gharaati, R. Khordad, Superlattices Microstruct. 48, 276 (2010)

    ADS  Google Scholar 

  23. B. Aalu, Physica B 575, 411699 (2019)

    Google Scholar 

  24. A.F. Nikiforov, V.B. Uvarov, Special Functions of Mathematical Physics (Birkhauser, Basel, 1988)

  25. N.F. Johnson, J. Phys.: Condens. Matter 7, 965 (1995)

    ADS  Google Scholar 

  26. L. Dantas, C. Furtado, A.L. Silva Netto, Phys. Lett. A 379, 11 (2015)

    ADS  MathSciNet  Google Scholar 

  27. C.L. de Souza Batista, D. Li, Phys. Rev. B 55, 1582 (1997)

    ADS  Google Scholar 

  28. W.C. Tan, J.C. Inkson, Semicond. Sci. Technol. 11, 1635 (1996)

    ADS  Google Scholar 

  29. M.K. Bahar, A. Soylu, J. Phys. B: At. Mol. Opt. Phys. 51, 105701 (2018)

    ADS  Google Scholar 

  30. W.C. Qiang, Y. Gao, R.S. Zhou, Cent. Eur. J. Phys. 6, 356 (2008)

    Google Scholar 

  31. L. Hulthen, Ark. Mat. Astron. Fys. A 28, 5 (1942)

    MathSciNet  Google Scholar 

  32. A. Soylu, Phys. Plasmas 19, 072701 (2012)

    ADS  Google Scholar 

  33. H. Ciftci, R.L. Hall, N. Saad, J. Phys. A: Math. Gen. 36, 11807 (2003)

    ADS  Google Scholar 

  34. K.L. Jahan, B. Boyacioglu, A. Chatterjee, Sci. Rep. 9, 15824 (2019)

    ADS  Google Scholar 

  35. M. Ciurla, J. Adamowski, B. Szafran, S. Bednarek, Physica E 15, 261 (2002)

    ADS  Google Scholar 

  36. R. Khordad, Mod. Phys. Lett. B 29, 1550127 (2015)

    ADS  Google Scholar 

  37. K.L. Jahan, A. Boda, I.V. Shankar, C.N. Raju, A. Chatterjee, Sci. Rep. 8, 5073 (2018)

    ADS  Google Scholar 

  38. R.N. Hill, J. Chem. Phys. 83, 1173 (1985)

    ADS  Google Scholar 

  39. A. Chatterjee, J. Phys. A: Math. Gen. 18, 2403 (1985)

    ADS  Google Scholar 

  40. T. Imbo, A. Pagnamenta, U. Sukhatme, Phys. Rev. D 29, 1669 (1984)

    ADS  Google Scholar 

  41. U. Sukhatme, T. Imbo, Phys. Rev. D 28, 418 (1983)

    ADS  MathSciNet  Google Scholar 

  42. A. Shaer, M.K. Elsaid, M. Elhasan, Turk. J. Phys. 40, 209 (2016)

    Google Scholar 

  43. V. Fock, Z. Phys. 47, 446 (1928)

    ADS  Google Scholar 

  44. C.G. Darwin, Math. Proc. Cambridge Philos. Soc. 27, 86 (1930)

    ADS  Google Scholar 

  45. R. Khordad, B. Mirhosseini, M.M. Mirhosseini, J. Low Temp. Phys. 197, 95 (2019)

    ADS  Google Scholar 

  46. D. Mally, C. Chapelier, A. Benoit, Phys. Rev. Lett. 70, 2020 (1993)

    ADS  Google Scholar 

  47. S. Schnez, F. Molitor, C. Stampfer, J. Guttinger, I. Shorubalko, T. Ihn, K. Ensslin, Appl. Phys. Lett. 94, 012107 (2009)

    ADS  Google Scholar 

  48. U.F. Keyser, S. Borck, R.J. Haug, M. Bichler, G. Abstreiter, W. Wegscheider, Semicond. Sci. Technol. 17, L22 (2002)

    ADS  Google Scholar 

  49. B.I. Halperin, Phys. Rev. B 25, 2185 (1982)

    ADS  Google Scholar 

  50. Y. Meir, O. Entin-Wohlman, Y. Gefen, Phys. Rev. B 42, 8351 (1990)

    ADS  Google Scholar 

  51. Y. Avishai, Y. Hatsugai, M. Kohmoto, Phys. Rev. B 47,9501 (1993)

    ADS  Google Scholar 

  52. M.V. Berry, J.P. Keating, J. Phys. A 27, 6167 (1994)

    ADS  MathSciNet  Google Scholar 

  53. K. Bakke, Int. J. Theor. Phys. 51, 759 (2012)

    Google Scholar 

  54. K. Bakke, C. Furtado, J. Math. Phys. 53, 023514 (2012)

    ADS  MathSciNet  Google Scholar 

  55. V.Y. Prinz, V.A. Seleznev, A.K. Gutakovsky, A.V. Chehovskiy, V.V. Preobrazhenskii, M.A. Putyato, T.A. Gavrilova, Phys. E 6, 828 (2000)

    Google Scholar 

  56. E. Aurell, J. Phys. A: Math. Gen. 32, 571 (1999)

    ADS  Google Scholar 

  57. C. Furtado, A. Rosas, S. Azevedo, Europhys. Lett. 79, 57001 (2007)

    ADS  Google Scholar 

  58. J.A. Neto, J.D.S. Oliveira, C. Furtado, S. Sergeenlov, Eur. Phys. J. Plus 133, 185 (2018)

    Google Scholar 

  59. J.A. Neto, M.J. Bueno, C. Furtado, Ann. Phys. 373, 273 (2016)

    ADS  Google Scholar 

  60. M.J. Bueno, J. Lemos de Melo, C. Furtado, A.M.D.M. Carvalho, Eur. Phys. J. Plus 129, 201 (2014)

    Google Scholar 

  61. L. Dantas, C. Furtado, Phys. Lett. A 377, 2926 (2013)

    ADS  MathSciNet  Google Scholar 

  62. A.L. Silva Netto, C. Chesman, C. Furtado, Phys. Lett. A 372, 3894 (2008)

    ADS  Google Scholar 

  63. M. Eshghi, H. Mehraban, S.M. Ikhdair, Chin. Phys. B 26, 060302 (2017)

    ADS  Google Scholar 

  64. M. Eshghi, R. Sever, S.M. Ikhdair, Chin. Phys. B 27, 020301 (2018)

    ADS  Google Scholar 

  65. M. Eshghi, H. Mehraban, Eur. Phys. J. Plus 132, 121 (2017)

    Google Scholar 

  66. B.J. Falaye, G.H. Sun, R.S. Ortigoz, S.H. Dong, Phys. Rev. E 93, 053201 (2016)

    ADS  Google Scholar 

  67. R.L. Greene, C. Aldrich, Phys. Rev. A 14, 2363 (1976)

    ADS  Google Scholar 

  68. S.H. Dong, Factorization Method in Quantum Mechanics (Springer, Armsterdam, 2007)

  69. C.-S. Jia, X.-T. You, J.-Y. Liu, L.-H. Zhang, X.-L. Peng, Y.-T. Wang, L.-S. Wei, Chem. Phys. Lett. 717, 16 (2019)

    ADS  Google Scholar 

  70. C.-S. Jia, L.-H. Zhang, X.-L. Peng, J.-X. Luo, Y.-L. Zhao, J.-Y. Liu, J.-J. Guo, L.-D. Tang, Chem. Eng. Sci. 202, 70 (2019)

    Google Scholar 

  71. Z. Ocak, H. Yanar, M. Salt, O. Aydoğdu, Chem. Phys. 513, 252 (2018)

    Google Scholar 

  72. A. Bera, A. Ghosh, M. Ghosh, J. Magn. Magn. Mater. 484, 391 (2019)

    ADS  Google Scholar 

  73. U.S. Okorie, A.N. Ikot, M.C. Onyeaju, E.O. Chukwuocha, Rev. Mex. Fis. 64, 608 (2018)

    Google Scholar 

  74. B. Boyacioglu, A. Chatterjee, Phys. E 44, 1826 (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hewa Y. Abdullah.

Additional information

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikot, A.N., Edet, C.O., Amadi, P.O. et al. Thermodynamic properties of Aharanov–Bohm (AB) and magnetic fields with screened Kratzer potential. Eur. Phys. J. D 74, 159 (2020). https://doi.org/10.1140/epjd/e2020-10084-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-10084-9

Keywords

Navigation