Skip to main content
Log in

Polarization in the production of the antihydrogen ion

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

We provide estimates of both the cross section and rate coefficient for the radiative attachment of a second positron to create the H̅+ ion, H̅(1s)+e+→H̅+(1s2 1Se)+ℏω, for which the polarization of the initial state H̅(1s) is taken into account. We show how to analytically integrate the resulting six-dimensional, three-body integrals for wave functions composed of explicitly correlated exponentials, a result that may be extended to Hylleraas wave functions. We extend Bhatia’s polarization results for the equivalent matter problem down to the low temperatures required for the Gravitational Behaviour of Antihydrogen at Rest (GBAR) experiment at CERN. The two-electron polarization cross-term is of intrinsic interest because it has every appearance of being singular at the origin, but non-singular when integrated numerically. We show that conventional approaches lead to a final integral with two singular terms that may be made to cancel in lowest order. However, higher-order terms in such approaches defy analytical integration. We use an integro-differential transform based on Gaussian transforms to bypass this blockage to yield a fully analytic result. Even in this method, one avoids the singular form only by integrating out the radial integrals before solving the second Gaussian integral.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Maury, Hyperfine Interact. 109, 43 (1997)

    ADS  Google Scholar 

  2. M. Amoretti, et al. (ATHENA Collaboration), Nature 419, 456 (2002)

    ADS  Google Scholar 

  3. G. Gabrielse, et al. (ATRAP Collaboration), Phys. Rev. Lett. 89, 213401 (2002)

    ADS  Google Scholar 

  4. Y. Enomoto, et al., Phys. Rev. Lett. 105, 243401 (2010)

    ADS  Google Scholar 

  5. G.B. Andresen, et al. (ALPHA Collaboration), Nature 468, 456 (2010)

    Google Scholar 

  6. G.B. Andresen, et al. (ALPHA Collaboration), Phys. Lett. B 695, 95 (2011)

    ADS  Google Scholar 

  7. G. Gabrielse, et al. (ATRAP Collaboration), Phys. Rev. Lett. 108, 113002 (2012)

    ADS  Google Scholar 

  8. G.B. Andresen, et al. (ALPHA Collaboration), Nat. Phys. 7, 558 (2011)

    Google Scholar 

  9. C. Amole, et al. (ALPHA Collaboration), Nature 483, 439 (2012)

    ADS  Google Scholar 

  10. C. Amole, et al. (ALPHA Collaboration), Nat. Commun. 5, 3955 (2014)

    ADS  Google Scholar 

  11. The ALPHA Collaboration, A.E. Charman, Nat. Commun. 4, 1875 (2013)

    Google Scholar 

  12. J. Walz, T.W. Hänsch, Gen. Relativ. Gravitation 36, 561 (2004)

    ADS  Google Scholar 

  13. P. Pérez, Y. Sacquin, Classical Quantum Gravity 29, 184008 (2012)

    ADS  Google Scholar 

  14. D.P. van der Werf, Int. J. Mod. Phys. Conf. Ser. 30, 1460263 (2014)

    Google Scholar 

  15. C.M. Keating, M. Charlton, J.C. Straton, J. Phys. B: At. Mol. Opt. Phys. 47, 225202 (2014)

    ADS  Google Scholar 

  16. C.M. Keating, K.Y. Pak, J.C. Straton, J. Phys. B: At. Mol. Opt. Phys. 49, 074002 (2016)

    ADS  Google Scholar 

  17. T. Ohmura, H. Ohmura, Phys. Rev. 118, 154 (1960)

    ADS  Google Scholar 

  18. N.M. Cann, Ph.D. thesis, Dalhousie University, Halifax, Canada, 1993, p. 28, Table 2.3.4; dalspace.library.dal.ca/bitstream/handle/10222/55378/NN93638.PDF

  19. A.J. Thakkar, V.H. Smith, Phys. Rev. A 15, 1 (1977)

    ADS  Google Scholar 

  20. A.K. Bhatia, Phys. Rev. A 87, 042705 (2013)

    ADS  Google Scholar 

  21. L.D. Landau, E.M. Lifshitz, in Quantum Mechanics (Non-relativistic Theory), Course of Theoretical Physics (Pergamon Press, Oxford, 1977), Vol. 3, p. 606

  22. G.W.F. Drake, Astrophys. J. 189, 161 (1974)

    ADS  Google Scholar 

  23. V.L. Jacobs, A.K. Bhatia, A. Temkin, Astrophys. J. 242, 1278 (1980)

    ADS  Google Scholar 

  24. S. Chandrasekhar, Astrophys. J. 102, 223 (1945)

    ADS  Google Scholar 

  25. S. Chandrasekhar, D.D. Elbert, Astrophys. J. 128, 633 (1958)

    ADS  Google Scholar 

  26. A. Ghoshal, Y.K. Ho, Phys. Rev. E 81, 016403 (2010)

    ADS  Google Scholar 

  27. C.L. Pekeris, Phys. Rev. 112, 1649 (1958)

    ADS  MathSciNet  Google Scholar 

  28. C.L. Pekeris, Phys. Rev. 126, 1470 (1962)

    ADS  Google Scholar 

  29. A. Temkin, Phys. Rev. 107, 1004 (1957)

    ADS  MathSciNet  Google Scholar 

  30. S.J. Ward, M.R.C. McDowell, J.W. Humberston, Europhys. Lett. 1, 167 (1986)

    ADS  Google Scholar 

  31. A. Temkin, Phys. Rev. 116, 358 (1959)

    ADS  Google Scholar 

  32. P.G. Burke, H.M. Schey, Phys. Rev. 126, 147 (1962)

    ADS  Google Scholar 

  33. J.J. Matese, R.S. Oberoi, Phys. Rev. A 4, 569 (1971)

    ADS  Google Scholar 

  34. P.G. Burke, D.F. Gallaher, S. Geltman, J. Phys. B: At. Mol. Opt. Phys. 2, 1142 (1969)

    ADS  Google Scholar 

  35. J. Shertzer, A. Temkin, Phys. Rev. A 74, 052701 (2006)

    ADS  Google Scholar 

  36. A.K. Bhatia, Phys. Rev. A 75, 032713 (2007)

    ADS  Google Scholar 

  37. A.K. Bhatia, Atoms 7, 17 (2017)

    ADS  Google Scholar 

  38. A.K. Bhatia, personal communication (2019)

  39. C.M. Keating, A method for achieving analytic formulas for three body integrals consisting of powers and exponentials in all three interparticle hyllerass coordinates, M.Sc. thesis, Portland State University, 2015. http://archives.pdx.edu/ds/psu/16438

  40. E.A. Hyllerass, Z. Phys. 54, 347 (1929)

    ADS  Google Scholar 

  41. E. Ley-Koo, C.F. Bunge, Phys. Rev. A 40, 1215 (1989)

    ADS  Google Scholar 

  42. C.J. Joachain, in Quantum Collision Theory (North-Holland, NY, 1983), p. 671, Eq. (B.44)

  43. W. Magnus, F. Oberhettinger, R.P. Soni, in Formulas and Theorems for the Special Functions of Mathematical Physics, 3rd edition (Springer-Verlag, Heidelberg, New York, 1966), p. 107

  44. M. Abramowitz, I.A. Stegun (Eds.), in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (National Bureau of Standards, Applied Mathematics Series, 55Washington, 1970), p. 798 Table 22.9

  45. E.W. Weisstein, Legendre polynomial. From MathWorld http://mathworld.wolfram.com/LegendrePolynomial.html

  46. J.C. Straton, Phys. Rev. A 41, 71 (1990)

    ADS  Google Scholar 

  47. I.S. Gradshteyn, I.M. Ryzhik, inTable of Integrals, Series, and Products, 5th edition (Academic, New York, 1994), p. 382, No. 3.461.2

  48. I.S. Gradshteyn, I.M. Ryzhik, in Table of Integrals, Series, and Products, 5th edition (Academic, New York, 1994), p. 384, No. 3.471.9

  49. I.M. Cheshire, Proc. Phys. Soc. 83, 227 (1964)

    ADS  Google Scholar 

  50. C.J. Joachain, in Quantum Collision Theory (North-Holland, NY, 1983), p. 49, Eq. (3.27)

  51. M.R.C. McDowell, J.P. Coleman, in Introduction to the Theory of Ion-Atom Collisions (North-Holland, 1970), p. 221, Eq. (5.1.2)

  52. N.F. Mott, H. Massey, in The Theory of Atomic Collisions, 3rd edition (Oxford, 1965), p. 133, Eq. (84)

  53. C.J. Joachain, in Quantum Collision Theory (North-Holland, NY, 1983), p. 69, Eq. (4.44)

  54. M.R.C. McDowell, J.P. Coleman, in Introduction to the Theory of Ion-Atom Collisions (North-Holland, 1970), p. 76, Eq. (A2.1.2)

  55. N.F. Mott, H.S.U Massey, in The Theory of Atomic Collisions, 3rd edition (Oxford, 1965), p. 23, Eq. (15)

  56. C.J. Joachain, in Quantum Collision Theory (North-Holland, NY, 1983), p. 71, Eq. (4.63)

  57. M.R.C. McDowell, J.P. Coleman, in Introduction to the Theory of Ion-Atom Collisions (North-Holland, 1970), p. 74, Eq. (2.8.5)

  58. N.F. Mott, H.S.U. Massey, in The Theory of Atomic Collisions, 3rd edition (Oxford, 1965), p. 24, Eq. (17)

  59. H. Feshbach, Ann. Phys. 19, 287 (1962)

    ADS  Google Scholar 

  60. A.K. Bhatia, Atoms 6, 27 (2018)

    ADS  Google Scholar 

  61. S.J. Smith, D.S. Burch, Phys. Rev. 116, 1125 (1959)

    ADS  Google Scholar 

  62. M. Génévriez, X. Urbain, Phys. Rev. A 91, 033403 (2015)

    ADS  Google Scholar 

  63. M. Venuti, P. Decleva, J. Phys. B: At. Mol. Opt. Phys. 30, 4839 (1997)

    ADS  Google Scholar 

  64. H.P. Saha, Phys. Rev. A 38, 4546 (1988)

    ADS  Google Scholar 

  65. A.W. Wishart, J. Phys. B: At. Mol. Opt. Phys. 12, 3511 (1979)

    ADS  Google Scholar 

  66. A.L. Stewart, J. Phys. B: At. Mol. Opt. Phys. 11, 3851 (1978)

    ADS  Google Scholar 

  67. J.T. Broad, W.P. Reinhardt, Phys. Rev. A 14, 2159 (1976)

    ADS  Google Scholar 

  68. M.P. Ajmera, K.T. Chung, Phys. Rev. A 12, 475 (1975)

    ADS  Google Scholar 

  69. A.M. Frolov, J. Phys. B: At. Mol. Opt. Phys. 37, 853 (2004)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jack C. Straton.

Additional information

Contribution to the Topical Issue “Low-Energy Positron and Positronium Physics and Electron-Molecule Collisions and Swarms (POSMOL 2019)”, edited by Michael Brunger, David Cassidy, Saša Dujko, Dragana Maric, Joan Marler, James Sullivan, Juraj Fedor.

Publisher's Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yazejian, C.A., Straton, J.C. Polarization in the production of the antihydrogen ion. Eur. Phys. J. D 74, 156 (2020). https://doi.org/10.1140/epjd/e2020-100548-7

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/e2020-100548-7

Navigation