Skip to main content
Log in

Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a scheme to implement a steady optical-photon-and-magnon entanglement in a hybrid optomagnonics-mechanical system by adiabatical elimination of the auxiliary microwave (MW) cavity and effective laser cooling of a delocalized Bogoliubov mode. The system consists of a magnon, an optical and a MW cavities, and a mechanical vibrator. To achieve a direct entangling interaction between the magnon and the optical photon, we drive the optical cavity and magnon at the red and blue sideband associated with the mechanical resonator, respectively. In particular, by eliminating the MW cavity and optimizing the relative ratio of effect couplings, rather than merely increasing their magnitudes, we achieve a strong entanglement between optical photons and magnons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Wakakuwa, E., Soeda, A., Murao, M.: Complexity of causal order structure in distributed quantum information processing: more rounds of classical communication reduce entanglement cost. Phys. Rev. Lett. 122, 190502 (2019)

    ADS  Google Scholar 

  2. Stobińska, M., Buraczewski, A., Moore, M., Clements, W.R., Renema, J.J., Nam, S.W., Gerrits, T., Lita, A., Kolthammer, W.S., Eckstein, A., Walmsley, I.A.: Quantum interference enables constant-time quantum information processing. Sci. Adv. 5, eaau9674 (2019)

    ADS  Google Scholar 

  3. Su, Y.C., Wu, S.T.: Entanglement enhancement through multirail noise reduction for continuous-variable measurement-based quantum-information processing. Phys. Rev. A 96, 032327 (2017)

    ADS  Google Scholar 

  4. Pivoluska, M., Huber, M., Malik, M.: Layered quantum key distribution. Phys. Rev. A 97, 032312 (2018)

    ADS  Google Scholar 

  5. Lo, H.K., Ma, X., Chen, K.: Decoy state quantum key distribution, entangled quantum-key-distribution randomness. Phys. Rev. Lett. 94, 230504 (2005)

    ADS  Google Scholar 

  6. Owens, I.J., Hughes, R.J., Nordholt, J.E.: Entangled quantum-key-distribution randomness. Phys. Rev. A 78, 022307 (2008)

    ADS  Google Scholar 

  7. Bruß, D., D’Ariano, G.M., Lewenstein, M., Macchiavello, C., Sen, A., Sen, U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)

    ADS  MATH  Google Scholar 

  8. Schaetz, T., Barrett, M.D., Leibfried, D., Chiaverini, J., Britton, J., Itano, W.M., Jost, J.D., Langer, C., Wineland, D.J.: Quantum dense coding with atomic qubits. Phys. Rev. Lett. 93, 040505 (2004)

    ADS  Google Scholar 

  9. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., Zeilinger, A., Pan, J.W.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)

    ADS  Google Scholar 

  10. DelRe, E., Crosignani, B., Di Porto, P.: Scheme for total quantum teleportation. Phys. Rev. Lett. 84, 2989 (2000)

    ADS  Google Scholar 

  11. Gour, G., Wallach, N.R.: Entanglement of subspaces and error-correcting codes. Phys. Rev. A 76, 042309 (2007)

    ADS  Google Scholar 

  12. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding. Phys. Rev. A 77, 064302 (2008)

    ADS  Google Scholar 

  13. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90, 015002 (2018)

    ADS  MathSciNet  Google Scholar 

  14. Sehrawat, A., Zemann, D., Englert, B.G.: Hybrid quantum computation. Phys. Rev. A 83, 022317 (2011)

    ADS  Google Scholar 

  15. Eisert, J., Gross, D.: Supersonic quantum communication. Phys. Rev. Lett. 102, 240501 (2009)

    ADS  Google Scholar 

  16. Miguel Arrazola, J., Scarani, V.: Covert quantum communication. Phys. Rev. Lett. 117, 250503 (2016)

    Google Scholar 

  17. Kittel, C.: On the theory of ferromagnetic resonance absorption. Phys. Rev. 73, 155 (1948)

    ADS  Google Scholar 

  18. Huebl, H., Zollitsch, C.W., Lotze, J., Hocke, F., Greifenstein, M., Marx, A., Gross, R., Goennenwein, S.T.B.: High cooperativity in coupled microwave resonator ferrimagnetic insulator hybrids. Phys. Rev. Lett. 111, 127003 (2013)

    ADS  Google Scholar 

  19. Tabuchi, Y., eiichiro Ishino, S., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Hybridizing ferromagnetic magnons and microwave photons in the quantum limit. Phys. Rev. Lett. 113, 083603 (2014)

    ADS  Google Scholar 

  20. Zhang, X., Zou, C.L., Jiang, L., Tang, H.X.: Strongly coupled magnons and cavity microwave photons. Phys. Rev. Lett. 113, 156401 (2014)

    ADS  Google Scholar 

  21. Raimond, J.M., Brune, M., Haroche, S.: Manipulating quantum entanglement with atoms and photons in a cavity. Rev. Mod. Phys. 73, 565 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Agarwal, G.S.: Vacuum-field Rabi splittings in microwave absorption by Rydberg atoms in a cavity. Phys. Rev. Lett. 53, 1732 (1984)

    ADS  Google Scholar 

  23. Lien, Y.H., Barontini, G., Scheucher, M., Mergenthaler, M., Goldwin, J., Hinds, E.A.: Observing coherence effects in an overdamped quantum system. Nat. Commun. 7, 13933 (2016)

    ADS  Google Scholar 

  24. Yao, B., Gui, Y.S., Rao, J.W., Kaur, S., Chen, X.S., Lu, W., Xiao, Y., Guo, H., Marzlin, K.P., Hu, C.M.: Cooperative polariton dynamics in feedback-coupled cavities. Nat. Commun. 8, 1437 (2017)

    ADS  Google Scholar 

  25. Zhang, D., Wang, X.M., Li, T.F., Luo, X.Q., Wu, W., Nori, F., You, J.Q.: Cavity quantum electrodynamics with ferromagnetic magnons in a small yttrium-iron-garnet sphere. npj Quantum Inf. 1, 15014 (2015)

    ADS  Google Scholar 

  26. Wang, Y.P., Zhang, G.Q., Zhang, D., Li, T.F., Hu, C.M., You, J.Q.: Bistability of cavity magnon polaritons. Phys. Rev. Lett. 120, 057202 (2018)

    ADS  Google Scholar 

  27. Tabuchi, Y., Ishino, S., Noguchi, A., Ishikawa, T., Yamazaki, R., Usami, K., Nakamura, Y.: Coherent coupling between a ferromagnetic magnon and a superconducting qubit. Science 349, 405 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature (London) 431, 162 (2004)

    ADS  Google Scholar 

  29. Roy, C., Hughes, S.: Phonon-dressed mollow triplet in the regime of cavity quantum electrodynamics: excitation-induced dephasing and nonperturbative cavity feeding effects. Phys. Rev. Lett. 106, 247403 (2011)

    ADS  Google Scholar 

  30. Giesz, V., Somaschi, N., Hornecker, G., Grange, T., Reznychenko, B., De Santis, L., Demory, J., Gomez, C., Sagnes, I., Lemaître, A., Krebs, O., Lanzillotti-Kimura, N.D., Lanco, L., Auffeves, A., Senellart, P.: Coherent manipulation of a solid-state artificial atom with few photons. Nat. Commun. 7, 11986 (2016)

    ADS  Google Scholar 

  31. De Santis, L., Antón, C., Reznychenko, B., Somaschi, N., Coppola, G., Senellart, J., Gómez, C., Lemaître, A., Sagnes, I., White, A.G., Lanco, L., Auffèves, A., Senellart, P.: A solid-state single-photon filter. Nat. Nanotechnol. 12, 663 (2017)

    ADS  Google Scholar 

  32. Li, J., Zhu, S.Y., Agarwal, G.S.: Squeezed states of magnons and phonons in cavity magnomechanics. Phys. Rev. A 99, 021801(R) (2019)

    ADS  Google Scholar 

  33. Li, J., Zhu, S.Y.: Entangling two magnon modes via magnetostrictive interaction. New J. Phys. 21, 085001 (2019)

    ADS  Google Scholar 

  34. Samkharadze, N., Zheng, G., Kalhor, N., Brousse, D., Sammak, A., Mendes, U.C., Blais, A., Scappucci, G., Vandersypen, L.M.K.: Strong spin-photon coupling in silicon. Science 359, 1123 (2018)

    ADS  Google Scholar 

  35. Mi, X., Cady, J.V., Zajac, D.M., Deelman, P.W., Petta, J.R.: Strong coupling of a single electron in silicon to a microwave photon. Science 355, 156 (2017)

    ADS  Google Scholar 

  36. Nishizawa, J., Suto, K.: Semiconductor Raman laser. J. Appl. Phys. 51, 2429 (1980)

    ADS  Google Scholar 

  37. Marquardt, F., Chen, J.P., Clerk, A.A., Girvin, S.M.: Quantum theory of cavity-assisted sideband cooling of mechanical motion. Phys. Rev. Lett. 99, 093902 (2007)

    ADS  Google Scholar 

  38. Wilson-Rae, I., Nooshi, N., Zwerger, W., Kippenberg, T.J.: Theory of ground state cooling of a mechanical oscillator using dynamical backaction. Phys. Rev. Lett. 99, 093901 (2007)

    ADS  Google Scholar 

  39. Stancil, D.D., Prabhakar, A.: Spin Waves: Theory and Applications. Springer, Berlin (2009)

    MATH  Google Scholar 

  40. Soykal, Ö.O., Flatté, M.E.: Strong field interactions between a nanomagnet and a photonic cavity. Phys. Rev. Lett. 104, 077202 (2010)

    ADS  Google Scholar 

  41. Soykal, Ö.O., Flatté, M.E.: Size dependence of strong coupling between nanomagnets and photonic cavities. Phys. Rev. B 82, 104413 (2010)

    ADS  Google Scholar 

  42. Holstein, T., Primakoff, H.: Field dependence of the intrinsic domain magnetization of a ferromagnet. Phys. Rev. 58, 1098 (1940)

    ADS  MATH  Google Scholar 

  43. Li, J., Zhu, S.Y., Agarwal, G.S.: Magnon–photon–phonon entanglement in cavity magnomechanics. Phys. Rev. Lett. 121, 203601 (2018)

    ADS  Google Scholar 

  44. Barzanjeh, Sh., Vitali, D., Tombesi, P., Milburn, G.J.: Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Phys. Rev. A 84, 042342 (2011)

    ADS  Google Scholar 

  45. Teufel, J.D., Li, D., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Simmonds, R.W.: Circuit cavity electromechanics in the strong-coupling regime. Nature (London) 471, 204 (2011)

    ADS  Google Scholar 

  46. Wang, Y.D., Clerk, A.A.: Reservoir-engineered entanglement in optomechanical systems. Phys. Rev. Lett. 110, 253601 (2013)

    ADS  Google Scholar 

  47. Liao, C.G., Chen, R.X., Xie, H., He, M.Y., Lin, X.M.: Quantum synchronization and correlations of two mechanical resonators in a dissipative optomechanical system. Phys. Rev. A 99, 033818 (2019)

    ADS  Google Scholar 

  48. Bergeal, N., Vijay, R., Manucharyan, V.E., Siddiqi, I., Schoelkopf, R.J., Girvin, S.M., Devoret, M.: Analog information processing at the quantum limit with a Josephson ring modulator. Nat. Phys. 6, 296 (2010)

    Google Scholar 

  49. Peropadre, B., Zueco, D., Wulschner, F., Deppe, F., Marx, A., Gross, R., JoséGarcía-Ripoll, J.: Tunable coupling engineering between superconducting resonators: from sidebands to effective gauge fields. Phys. Rev. B 87, 134504 (2013)

    ADS  Google Scholar 

  50. Teufel, J.D., Donner, T., Li, D., Harlow, J.W., Allman, M.S., Cicak, K., Sirois, A.J., Whittaker, J.D., Lehnert, K.W., Simmonds, R.W.: Sideband cooling of micromechanical motion to the quantum ground state. Nature (London) 475, 359 (2011)

    ADS  Google Scholar 

  51. Adesso, G., Illuminati, F.: Equivalence between entanglement and the optimal fidelity of continuous variable teleportation. Phys. Rev. Lett. 95, 150503 (2005)

    ADS  Google Scholar 

  52. Mari, A., Vitali, D.: Optimal fidelity of teleportation of coherent states and entanglement. Phys. Rev. A 78, 062340 (2008)

    ADS  Google Scholar 

  53. Wang, Y.P., Zhang, G.Q., Zhang, D., Luo, X.Q., Xiong, W., Wang, S.P., Li, T.F., Hu, C.M., You, J.Q.: Magnon Kerr effect in a strongly coupled cavity-magnon system. Phys. Rev. B 94, 224410 (2016)

    ADS  Google Scholar 

  54. Paternostro, M., Vitali, D., Gigan, S., Kim, M.S., Brukner, C., Eisert, J., Aspelmeyer, M.: Creating and probing multipartite macroscopic entanglement with light. Phys. Rev. Lett. 99, 250401 (2007)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fujian Natural Science Foundation [Grant No. 2018J01661], the Outstanding Young Talent Fund Project of Jilin Province [Grant No. 20180520223JH] and the Science and Technology project of Jilin Provincial Education Department of China during the 13th Five-Year Plan Period [Grant No. JJKH20200510KJ].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rong-Can Yang or Hong-Yu Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, ZB., Yang, RC. & Liu, HY. Generation of optical-photon-and-magnon entanglement in an optomagnonics-mechanical system. Quantum Inf Process 19, 264 (2020). https://doi.org/10.1007/s11128-020-02764-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02764-9

Keywords

Navigation