Skip to main content

Advertisement

Log in

New compact of absorber thermal surface

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Frequency-selective heat infrared (IR) detectors are promising for numerous new apps such as solar cell detection, gas analysis, multi-color imaging, multi-channel detector, recognition of artificial objects in a natural setting, but these features involve extra filters which lead to elevated costs. Plasmonic metamaterial absorbers (PMAs) can impart frequency selectivity to standard heat, IR detectors merely by regulating the absorber surface geometry to generate surface plasmon resonance at the desired frequency. We present a nanoantenna-based mid-infrared absorber for heat infrared detectors. Our structure uses a portion of the noble metal used in standard absorbers and is only one layer thick, which enables incredibly tiny thermal conductivity leading to possibly very low thermal detector noise. Simulation results show that the proposed nanoantennas can achieve a harvesting efficiency of 40% at a frequency of 150 THz where the antenna input impedance is matched to that of fabricated rectifying devices. Achieve maximum bandwidth Absorber from 100 to 200 THz for application purposes energy harvesting sensor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adato, R., Yanik, A.A., Amsden, J.J., et al.: Ultra-sensitive vibrational spectroscopy of protein monolayers with plasmonic nanoantenna arrays. Proc. Natl. Acad. Sci. USA 106, 19227–19232 (2009)

    ADS  Google Scholar 

  • Ameling, R., Langguth, L., Hentschel, M., Meshch, M., Braun, P.V., Giessen, H.: Cavityenhanced localized plasmon resonance sensing. Appl. Phys. Lett. 97, 253116 (2010)

    ADS  Google Scholar 

  • Artar, A., Yanik, A.A., Altug, H.: Fabry-Perot nanocavities in multilayered plasmonic crystals for enhanced biosensing. Appl. Phys. Lett. 95, 767–768 (2009)

    Google Scholar 

  • Atwater, H.A., Polman, A.: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205–213 (2010)

    ADS  Google Scholar 

  • Aydin, K., Ferry, V.E., Briggs, R.M., Atwater, H.A.: Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers. Nat. Commun. 2, 517 (2011)

    ADS  Google Scholar 

  • COMSOL Multiphysics Reference Manual. http://www.comsol.com/

  • Chau, Y.F., et al.: Structurally and materially sensitive hybrid surface plasmon modes in periodic silver-shell nanopearl and its dimer arrays. J. Nanopart. Res. 15, 1424  (2013)

    ADS  Google Scholar 

  • Chau, Y.F.C., Chao, C.T.C., Chiang, H.P., Lim, C.M., Voo, N.Y., Mahadi, A.H.: Plasmonic effects in composite metal nanostructures for sensing applications. J. Nanopart. Res. 20, 190  (2018)

    ADS  Google Scholar 

  • Chau, Y.F.C., Chao, C.T.C., Rao, J.Y., Chiang, H.P., Lim, C.M., Lim, R.C., Voo, N.Y.: Tunable optical performances on a periodic array of plasmonic bowtie nanoantennas with hollow cavities. Nanoscale Res. Lett. 11, 411 (2016)

    ADS  Google Scholar 

  • Chau, Y.F.C., Wang, C.K., Shen, L., Lim, C.M., Chiang, H.P., Chou, C.T.C., Huang, H.J., Lin, C.T., Kumara, N.T.R.N., Voo, N.Y.: Simultaneous realization of high sensing sensitivity and tunability in plasmonic nanostructures arrays. Sci. Rep. 7, 16817 (2017)

    ADS  Google Scholar 

  • Chau, Y.F., Yeh, H.H., Tsai, D.P.: A new type of optical antenna: plasmonics nanoshell bowtie antenna with dielectric hole. J. Electromagn. Waves Appl. 24(13), 1621–1632 (2010)

    Google Scholar 

  • Chen, K., Dao, T.D., Ishii, S., Aono, M., Nagao, T.: Infrared aluminum metamaterial perfect absorbers for plasmon-enhanced infrared spectroscopy. Adv. Funct. Mater. 25, 6637–6643 (2015)

    Google Scholar 

  • Chen, J., Zhang, H., Liu, G., Liu, J., Liu, Y., Tang, L., Liu, Z.: High-quality temperature sensor based on the plasmonic resonant absorber. Plasmonics 14, 279–283 (2019)

    Google Scholar 

  • Cheng, Y., Luo, H., Chen, F., Gong, R.: Triple narrow-band plasmonic perfect absorber for refractive index sensing applications of optical frequency. OSA Continuum 2, 2113–2122 (2019)

    Google Scholar 

  • Chou, Y.F.C.: Plasmonic effects in the enclosed and opened metallodielectric bowtie nanostructures. Opt. Commum. 450, 180–189 (2019)

    ADS  Google Scholar 

  • Chou Chau, Y.-F., Jiang, J.-C., Chou Chao, C.-T., Chiang, H.-P., Lim, C.M.: Manipulating near field enhancement and optical spectrum in a pair-array of the cavity resonance based plasmonic nanoantennas. J. Phys. D Appl. Phys. 49(47), 475102(2016). https://doi.org/10.1088/0022-3727/49/47/475102

    Article  ADS  Google Scholar 

  • Chou, Y.F.C., Lim, C.M., Chiang, C.Y., Voo, N.Y., Idris, M.N.S.M., Chai, S.U.: Tunable silver-shell dielectric core nano-beads array for thin-film solar cell application. J. Nanopart. Res. 18, 88 (2016)

    ADS  Google Scholar 

  • Ding, F., Cui, Y., Ge, X., Jin, Y., He, S.: Ultra-broadband microwave metamaterial absorber. Appl. Phys. Lett. 100, 103506 (2012)

    ADS  Google Scholar 

  • Gadalla, M.N., Abdel-Rahman, M., Shamim, A.: Design, optimization and fabrication of a 28.3 THz nano-rectenna for infrared detection and rectification. Sci Rep 4, 4270  (2014)

    ADS  Google Scholar 

  • Gao, H., Zhou, D., Cui, W., Liu, Z., Liu, Y., Jing, Z., Peng, W.: Ultraviolet broadband plasmonic absorber with dual visible and near-infrared narrow bands. J. Opt. Soc. Am. A 36, 264–269 (2019)

    ADS  Google Scholar 

  • Guo, H., Liu, N., Fu, L., Meyrath, T.P., Zentgraf, T., Schweizer, H., Giessen, H.: Resonance hybridization in double split-ring resonator metamaterials. Opt. Express 15, 12095–12101 (2007)

    ADS  Google Scholar 

  • He, J., Ding, P., Wang, J., Fan, C., Liang, E.: Ultra-narrow band perfect absorbers based on plasmonic analog of electromagnetically induced absorption. Opt. Express 3, 6083–6091 (2015)

    ADS  Google Scholar 

  • Hsieh, et al.: Metal nano-particles sizing by thermal annealing for the enhancement of surface plasmon effects in thin-film solar cells application. Opt. Commum. 370, 85–90 (2016)

    ADS  Google Scholar 

  • Huang, Z., Chen, J., Liu, Y., Tang, L., Liu, G., Liu, X., Liu, Z.: Hybrid metal-semiconductor cavities for multi-band perfect light absorbers and excellent electric conducting interfaces. J Phys D Appl Phys 50, 335106 (2017)

    Google Scholar 

  • Hussain, F.F.K., Heikal, A.M., Hameed, M.F.O., El-Azab, J., Abdelaziz, W.S., Obayya, S.S.A.: Dispersion characteristics of asymmetric channel plasmon polariton waveguides. IEEE J. Quantum Electron. 50, 474–482 (2014)

    Google Scholar 

  • James, T.D., Mulvaney, P., Roberts, A.: The plasmonic pixel: large area, wide gamut color reproduction using aluminum nanostructures. Nano Lett. 16, 3817–3823 (2016)

    ADS  Google Scholar 

  • Johnson, P.B., Christy, R.W.: Optical constants of the noble metals. Phys. Rev. B 6, 4370–4379 (1972)

    ADS  Google Scholar 

  • Kraus, J.D., Marhefka, R.J.: Antennas for all applications. McGraw-Hill, New York (2002)

    Google Scholar 

  • Kumar N (2013) Spontaneous emission rate enhancement using optical antennas, Ph.D. Thesis, University of California, Berkeley, USA

  • Lahiri, B., McMeekin, S.G., De La Rue, R.M., Johnson, N.P.: Resonance hybridization in nanoantenna arrays based on asymmetric split-ring resonators. Appl. Phys. Lett. 98, 153116 (2011)

    ADS  Google Scholar 

  • Landy, N.I., Sajuyigbe, S., Mock, J.J., Smith, D.R., Padilla, W.J.: Perfect metamaterial absorber. Phys. Rev. Lett. 100, 207402 (2008)

    ADS  Google Scholar 

  • Li, Z., Butun, S., Aydin, K.: Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces. ACS Nano 8, 8242–8248 (2014)

    Google Scholar 

  • Li, Y., Liu, Z., Zhang, H., Tang, P., Wu, B., Liu, G.: Ultra-broadband perfect absorber utilizing refractory materials in metal-insulator composite multilayer stacks. Opt. Express 27, 1809–11818 (2019)

    Google Scholar 

  • Li, Y., Su, L., Shou, C., Yu, C., Deng, J., Fang, Y.: Surface-enhanced molecular spectroscopy (SEMS) based on perfect-absorber metamaterials in the mid-infrared. Sci. Rep. 3, 2865 (2013)

    ADS  Google Scholar 

  • Liu, X., et al.: Taming the blackbody with infrared metamaterials as selective thermal emitters. Phys. Rev. Lett. 107, 045901 (2011)

    ADS  Google Scholar 

  • Liu, G., Chen, J., Pang, P., Liu, Z.: Hybrid metal-semiconductor meta-surface based photo-electronic perfect absorber. IEEE J. Sel. Top. Quantum Electron. 25, 8520810 (2019a)

    Google Scholar 

  • Liu, X., Fu, G., Liu, M., Liu, G., Liu, Z.: High-quality plasmon sensing with excellent intensity contrast by dual narrow-band light perfect absorbs. Plasmonics 12, 65–68 (2017)

    Google Scholar 

  • Liu, Z., Fu, G., Yang, Y.X., Pan, P., Huang, Z., Chen, J.: A facile strategy for all-optical controlling platform by using plasmonic perfect absorbers. Plasmonics 13, 797–801 (2018)

    Google Scholar 

  • Liu, G., Liu, X., Chen, J., Li, Y., Shi, L., Fu, G., Liu, Z.: Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol. Energy Mater. Sol. Cells 190, 20–29 (2019c)

    Google Scholar 

  • Liu, Z., Liu, G., Fu, G., Liu, X., Huang, Z., Gu, G.: All-metal meta-surfaces for narrowband light absorption and high performance sensing. J. Phys. D Appl. Phys. 49, 445104 (2016b)

    Google Scholar 

  • Liu, Z., Liu, G., Fu, G., Liu, X., Wang, Y.: Multi-band light perfect absorption by a metal layer-coupled dielectric metamaterial. Opt. Express 24(5), 5020–5025 (2016a)

    ADS  Google Scholar 

  • Liu, Z., Liu, G., Liu, X., Huang, S., Wang, Y., Pan, P., Liu, M.: Achieving an ultra-narrow mutiband light absorption meta-surface via coupling with an optical cavity. Nanotechnology 26, 235702 (2015a)

    ADS  Google Scholar 

  • Liu, N., Mesch, M., Weiss, T., Hentschel, M., Giessen, H.: Infrared perfect absorber and its application as plasmonic Sensor. Nano Lett. 10, 2342–2348 (2010)

    ADS  Google Scholar 

  • Liu, Z., Tang, P., Liu, X., Yi, Z., Liu, G., Wang, Y., Liu, M.: Truncated titanium/semiconductor cones for wide-band solar absorbers. Nanotechnology 30, 305203 (2019b)

    ADS  Google Scholar 

  • Liu, Z., Yu, M., Huang, S., Liu, X., Wang, Y., Liu, M., Pana, P., Liu, G.: Enhancing refractive index sensing capability with hybrid plasmonic–photonic absorbers. J. Mater. Chem. C. 3, 4222–4226 (2015b)

    Google Scholar 

  • Luo, X., Tsai, D.P., Gu, M., Hong, M.: Extraordinary optical fields in nanostructures: from sub-diffraction-limited optics to sensing and energy conversion. Chem. Soc. Rev. 48, 2458–2494 (2019)

    Google Scholar 

  • Maier, S.A., Kik, P.G., Atwater, H.A.: Observation of coupled plasmon-polariton modes in Au nanoparticle chain waveguides of different lengths: estimation of waveguide loss. Appl. Phys. Lett. 81, 1714–1716  (2002)

    ADS  Google Scholar 

  • Malhat, H.A., Eltresy, N.A., Zainud-Deen, S.H., Wadalba, K.H.: Nano-dielectricresonator antenna reflectarray/transmittarray for terahertz applications. Adv. Electromag. 4(1), 36–44 (2015)

    ADS  Google Scholar 

  • Miyata, M., Hatada, H., Takahara, J.: Full-color subwavelength printing with gap-plasmonic optical antennas. Nano Lett. 16, 3166–3172 (2016)

    ADS  Google Scholar 

  • Nau, D., Seidel, A., Orzekowsky, R.B., Lee, S.H., Deb, S., Giessen, H.: Hydrogen sensor based on metallic photonic crystal slabs. Opt. Lett. 35, 3150–3152 (2010)

    ADS  Google Scholar 

  • Nihal FMFO (2017) Hameed Mohamed Hussein optical nano-antennas for energy harvesting (2017) Engineering and Green Technologies (AEEGT) Book Series

  • Ogawa, S., Fujisawa, D., Hata, H., Uetsuki, M., Misaki, K., Kimata, M.: Mushroom plasmonic metamaterial infrared absorbers. Appl. Phys. Lett. 106, 41105 (2015)

    Google Scholar 

  • Prodan, E., Radloff, C., Halas, N.J., Nordlander, P.: A hybridization model for the plasmon response of complex nanostructures. Science 302, 419–422 (2003)

    ADS  Google Scholar 

  • Rhee, J.Y., Yoo, Y.J., Kim, K.W., Kim, Y.J., Lee, Y.P.: Metamaterial-based perfect absorbers. J. Electromagn. Waves Appl. 28(13), 1541–1580 (2014)

    Google Scholar 

  • Shinpei, O., Masafumi, K.: Metal-insulator-metal-based plasmonic metamaterial absorbers at visible and infrared wavelengths: a review. Materials 11, 458 (2018)

    Google Scholar 

  • Song, M., et al.: Conversion of broadband energy to narrowband emission through double-sided metamaterials. Opt. Express 21, 32207–32216 (2013)

    ADS  Google Scholar 

  • Tan, S.J., Zhang, L., Zhu, D., et al.: Plasmonic color palettes for photorealistic printing with aluminum nanostructures. Nano Lett. 14, 4023–4029 (2014)

    ADS  Google Scholar 

  • Vajtai, R.: Hand book of nanomaterials. Springer Handbooks, New York (2013)

    Google Scholar 

  • Wang, B.-X., He, Y., Lou, P., Xing, W.: Design of a dual-band terahertz metamaterial absorber using two identical square patches for sensing application. Nanoscale Adv (2020). https://doi.org/10.1039/c9na00770a

    Article  Google Scholar 

  • Willets, K.A., Duyne, R.P.V.: Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267–297 (2007)

    ADS  Google Scholar 

  • Wu, C., Khanikaev, A.B., Adato, R., et al.: Fano-resonant asymmetric metamaterials for ultrasensitive spectroscopy and identification of molecular monolayers. Nat. Mater. 11, 69–75 (2011)

    ADS  Google Scholar 

  • Wu, D., Liu, Y., Li, R., Chen, L., Ma, R., Liu, C., Han, Y.H.: Infrared perfect ultra-narrow band absorber as plasmonic sensor. Nanoscale Res. Lett. 11, 483 (2016)

    ADS  Google Scholar 

  • Wu, J., Zhang, F., Li, Q., Chen, J., Feng, Q., Wu, L.: Infrared five-band polarization insensitive absorber with high absorptivity based on single complex resonator. Opt. Commun. 456, 124575 (2020). https://doi.org/10.1016/j.optcom.2019.124575

    Article  Google Scholar 

  • Xu, J., Zhao, Z., Yu, H., Yang, L., Gou, P., Cao, J., Zou, Y., Qian, J., Shi, T., Ren, Q., An, Z.: Design of triple-band metamaterial absorbers with refractive index sensitivity at infrared frequencies. Opt. Express 24, 25742–25751 (2016)

    ADS  Google Scholar 

  • Yang, W., Chau, Y.F.C., Jheng, S.C.: Analysis of transmittance properties of surface plasmon modes on periodic solid/outline bowtie nanoantenna arrays. Phys. Plasmas 20, 064503 (2013)

    ADS  Google Scholar 

  • Yanik, A.A., Huang, M., Artar, A., Chang, T.Y., Altug, H.: Integrated nanoplasmonic-nanofluidic biosensors with targeted delivery of analytes. Appl. Phys. Lett. 96, 021101 (2010)

    ADS  Google Scholar 

  • Ye, J., Shioi, M., Lodewijks, K., Lagae, L., Kawamura, T., Dorpe, P.V.: Tuning plasmonic interaction between gold nanorings and a gold film for surface enhanced Raman scattering. Appl. Phys. Lett. 97, 163106 (2010)

    ADS  Google Scholar 

  • Yi, Z., Liang, C., Chen, X., Zhou, Z., Tang, Y., Ye, X., Wu, P.: Dual-band plasmonic perfect absorber based on graphene metamaterials for refractive index sensing application. Micromachines 10(7), 443 (2019). https://doi.org/10.3390/mi10070443

    Article  Google Scholar 

  • Yong, Z., Zhang, S., Gong, C., He, S.: Narrow band perfect absorber for maximum localized magnetic and electric field enhancement and sensing applications. Sci. Rep. 6, 24063 (2016)

    ADS  Google Scholar 

  • Zhu, H., Yi, F., Cubukcu, E.: Nanoantenna absorbers for thermal detectors. IEEE Photon. Technol. Lett. 24(14), 1194–1196 (2012)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Nagy Asl.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Asl, A.N., Yousif, B. & Alzalabani, M. New compact of absorber thermal surface. Opt Quant Electron 52, 365 (2020). https://doi.org/10.1007/s11082-020-02483-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02483-6

Keywords

Navigation