Skip to main content
Log in

Modified Asano-Ohya-Khrennikov quantum-like model for decision-making process in a two-player game with nonlinear self- and cross-interaction terms of brain’s amygdala and prefrontal-cortex

  • Original Paper
  • Published:
Journal of Biological Physics Aims and scope Submit manuscript

Abstract

In this report, we propose a modification on the Asano-Ohya-Khrennikov quantum-like decision-making process model of a two-player game by adding additional nonlinear terms to the related comparison step dynamical equation. The additions are in the form of a self-interaction and cross-interaction of the brain’s amygdala and prefrontal cortex. We show that the cross-interaction significantly determines the final decision of a player, whether it becomes a rational or an irrational choice. In contrast, the nonlinear self-interaction term provides a feedback mechanism that speeds up the corresponding decision-making process. We also suggest the form of expectation values of the overall reaction rate coefficients of those nonlinear terms by making an analogy with the original model formulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Van de Ville, D.: Brain dynamics: global pulse and brain state switching. Curr. Biol. 29, R690 (2019)

    Article  Google Scholar 

  2. McIntosh, A.R., Jirsa, V.K.: The hidden repertoire of brain dynamics and dysfunction. Network Neuroscience 3, 994–1008 (2019)

    Article  Google Scholar 

  3. Lopez-Rincon, A., Cantu, C., Etcheverry, G., Soto, R., Shimoda, S.: Function based brain modeling and simulation of an ischemic region in post-stroke patients using the bidomain. J. Neurosci. Methods 331, 108464 (2020)

    Article  Google Scholar 

  4. Donnelly-Kehoe, P., Saenger, V.M., Lisofsky, N., Kühn, S., Kringelbach, M.L., Schwarzbach, J., Lindenberger, U., Deco, G.: Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting state activity. Hum. Brain Mapp. 40, 2967–2980 (2019)

    Google Scholar 

  5. Koyama, K., Niwase, K.: A quantum brain model of decision-making process incorporated with social psychology. NeuroQuantology 17, 72–76 (2019)

    Article  Google Scholar 

  6. Shafir, E., Tversky, A.: Thinking through uncertainty: nonconsequential reasoning and choice. Cogn. Psychol. 24, 449–474 (1992)

    Article  Google Scholar 

  7. Asano, M., Ohya, M., Khrennikov, A.: Quantum-like model for decision making process in two-player game: a non-Kolmogorovian model. Foundation of Physics 41, 538–548 (2011)

    Article  MathSciNet  Google Scholar 

  8. Asano, M., Basieva, I., Khrennikov, A., Ohya, M., Tanaka, Y.: Quantum-like dynamics of decision-making. Physica A 391, 2083–2099 (2012)

    Article  Google Scholar 

  9. Nasehi, M., Davoudi, K., Ebrahimi-Ghiri, M., Zarrindast, M.R.: Interplay between serotonin and cannabinoid function in the amygdala in fear conditioning. Brain Res. 1636, 142–151 (2016)

    Article  Google Scholar 

  10. Fadok, J.P., Markovic, M., Tovote, P., Lüthi, A.: New perspectives on central amygdala function. Curr. Opin. Neurobiol. 49, 141–147 (2018)

    Article  Google Scholar 

  11. Funahashi, S., Andreau, J.M.: Prefrontal cortex and neural mechanisms of executive function. Journal of Physiology-Paris 107, 471–482 (2013)

    Article  Google Scholar 

  12. Liang, H., Wang, H.: Top-down anticipatory control in prefrontal cortex. Theor. Biosci. 122, 70–86 (2003)

    Article  Google Scholar 

  13. Ledoux, J.E.: Cognitive-emotional interactions in the brain. Cognit. Emot. 3, 267–289 (1989)

    Article  Google Scholar 

  14. Kale, E.H., Üstün, S., Çiçek, M.: Amygdala–prefrontal cortex connectivity increased during face discrimination but not time perception. Eur. J. Neurosci. 50, 3873–3888 (2019)

    Article  Google Scholar 

  15. Burgos-Robles, A., Kimchi, E., Izadmehr, E.M., et al.: Amygdala inputs to prefrontal cortex guide behavior amid conflicting cues of reward and punishment. Nat. Neurosci. 20, 824–835 (2017)

    Article  Google Scholar 

  16. Fermin, A., Sakagami, M., Kiyonari, T., Li, Y., Matsumoto, Y., Yamagishi, T.: Representation of economic preferences in the structure and function of the amygdala and prefrontal cortex. Sci. Rep. 6, 20982 (2016)

    Article  Google Scholar 

  17. Sato, W., Kochiyama, T., Uono, S., Yoshikawa, S., Toichi, M.: Direction of amygdala–neocortex interaction during dynamic facial expression processing. Cereb. Cortex 27, 1878–1890 (2017)

    Google Scholar 

  18. Oliva, V., Cartoni, E., Latagliata, E.C., Puglisi-Allegra, S., Baldassarre, G.: Interplay of prefrontal cortex and amygdala during extinction of drug seeking. Brain Struct. Funct. 223, 1071–1089 (2018)

    Google Scholar 

  19. Cherniak, C., Rodriguez-Esteban, R.: Information processing limits on generating neuroanatomy: global optimization of rat olfactory cortex and amygdala. J. Biol. Phys. 36, 45–52 (2010)

    Article  Google Scholar 

  20. Busemeyer, J.R., Wang, Z., Townsend, J.T.: Quantum dynamics of human decision making. J. Math. Psychol. 50, 220–241 (2006)

    Article  MathSciNet  Google Scholar 

  21. Pothos, E.M., Busemeyer, J.R.: A quantum probability explanation for violation of rational decision theory. Proc. Roy. Soc. B 276, 2171–2178 (2009)

    Article  Google Scholar 

  22. Cheon, T., Takahashi, T.: Interference and inequality in quantum decision theory. Phys. Lett. A 375, 100–104 (2010)

    Article  MathSciNet  Google Scholar 

  23. Bagarello, F.: A quantum-like view to a generalized two players game. Int. J. Theor. Phys. 54, 3612–3627 (2015)

    Article  MathSciNet  Google Scholar 

  24. Bagarello, F.: Quantum concepts in the social, ecological and biological sciences. Cambridge University Press (2019)

  25. Alatas, H., Iskandar, A.A., Tjia, M.-O.: Tailoring spatial soliton characteristics and its dynamical behaviors in nonlinear reflection gratings. Journal of the Optical Society of America B: Optical Physics 27, 238–245 (2010)

    Article  Google Scholar 

  26. Rajan, M.S.M., Bhuvaneshwari, B.V.: Controllable soliton interaction in three mode nonlinear optical fiber. Optik 175, 39–48 (2018)

    Article  Google Scholar 

  27. Yang, C., Liu, W., Zhou, Q., Mihalache, D., Malomed, B.: One-soliton shaping and two-soliton interaction in the fifth-order variable-coefficient nonlinear Schrödinger equation. Nonlinear Dynamics95, 369–380 (2019)

    Article  Google Scholar 

  28. Villringer, A., Chance, B.: Non-invasive optical spectroscopy and imaging of human brain function. Trends Neurosci. 20, 435–442 (1997)

    Article  Google Scholar 

  29. Adachi, K., Fujita, S., Yoshida, A., Sakagami, H., Koshikawa, N., Kobayashi, M.: Anatomical and electrophysiological mechanisms for asymmetrical excitatory propagation in the rat insular cortex: in vivo optical imaging and whole-cell patch-clamp studies. J. Comp. Neurol. 521, 1598–1613 (2013)

    Article  Google Scholar 

Download references

Funding

This research is partially funded by PDUPT grant from the Ministry of Education and Culture, Republic of Indonesia under contract no: 4039/IT3.L1/PN/2020. We thank A. D. Garnadi for providing us some references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Husin Alatas.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthoharoh, L., Hardhienata, H. & Alatas, H. Modified Asano-Ohya-Khrennikov quantum-like model for decision-making process in a two-player game with nonlinear self- and cross-interaction terms of brain’s amygdala and prefrontal-cortex. J Biol Phys 46, 297–307 (2020). https://doi.org/10.1007/s10867-020-09553-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10867-020-09553-6

Keywords

Navigation