Skip to main content
Log in

Analytic radiation model for perfect fluid under homotopy perturbation method

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

An expression for mass of a spherically symmetric system is obtained by solving the Tolman–Oppenheimer–Volkoff equation, employing the homotopy perturbation method. With the help of this expression and the Einstein field equations, a set of interior solutions is arrived at. Thereafter, different aspects of the solution are explained as regards mass, density, pressure, energy, stability, mass–radius ratio, compactness factor and surface redshift. This analysis shows that all the physical properties, in connection to brown dwarf stars, are valid with the observed features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J H He Commun. Nonlinear Sci. Numer. Simul. 2 230 (1997)

  2. J H He Nonlinear Sci. Numer. Simul. 178 257 (1999)

  3. J H He Int. J. Nonlinear Mech. 35 37 (2000)

  4. J H He Appl. Math. Comput. 151 287 (2004)

  5. J H He Int. J. Nonlinear Sci. Numer. Simul. 6 207 (2005)

  6. J H He Phys. Lett. A 350 87 (2006)

  7. J H He Therm. Sci. 14 565 (2010)

  8. S J Liao The Proposed Homotopy Analysis Technique for the Solution of Nonlinear Problems, PhD thesis, Shanghai Jiao Tong University (1992)

  9. G L Liu Proceedings of the 7th Conference of the Modern Mathematics and Mechanics (Shanghai) pp 47–53 (1997)

  10. S J Liao Beyond Perturbation: Introduction to the Homotopy Analysis Method (Chapman & Hall/CRC Press: Boca Raton) (2003)

  11. S J Liao Appl. Math. Comput. 147 499 (2004)

  12. S J Liao Homotopy Analysis Method in Nonlinear Differential Equation (Springer & Higher Education Press: Berlin & Beijing) (2012)

  13. A Demir, S Erman, B Özgür and E Korkmaz Bound. Val. Prob. 61 1 (2013)

  14. D R Finkelstein Int. J. Theor. Phys. 47 534 (2008)

  15. S S Nourazar, M Soori and A Nazari-Golshan J. Appl. Math. Phys. 3 285 (2015)

  16. S S Siddiqi and M Iftikhar J. Asso. Arab. Univ. Basic Appl. Sci. 18 60 (2015)

    Google Scholar 

  17. F Rahaman, K Chakraborty, P K F Kuhfittig, G C Shit and M Rahman Eur. Phys. J. C 74 3126 (2014)

  18. A Burrows and L James Rev. Mod. Phys. 65 301 (1993)

    Article  ADS  Google Scholar 

  19. http://www.world-builders.org/lessons/less/les1/StarTables\_B.html

  20. R Rebolo, M R Z Osorio and L Martin Nature 377 129 (1995)

  21. L Herrera Phys. Lett. A 165 206 (1992)

  22. S Chandrashekhar Phys. Rev. Lett. 12 114 (1964)

  23. R M Wald General Relativity (Chicago Press: Chicago and London) p 127 (1984)

  24. H Bondi Proc. R. Soc. Lond. Ser. A Math. Phys. Sci. 281 39 (1964)

  25. A Das, F Rahaman, B K Guha and S Ray Eur. Phys. J. C 76 654 (2016)

  26. H A Buchdahl Phys. Rev. 116 1027 (1959)

  27. V K Shchigolev Univ. J. Appl. Math. 2 99 (2013)

  28. V K Shchigolev Univ. J. Comput. Math. 3 45 (2015)

  29. V K Shchigolev Univ. J. Comput. Math. 3 50 (2015)

  30. V K Shchigolev and D N Bezbatko Gen. Relat. Gravit. 51 34 (2019)

    Article  ADS  Google Scholar 

  31. V K Shchigolev and D Bezbatko Int. J. Adv. Astron. 5 38 (2017)

    Article  Google Scholar 

  32. P Bhar, F Rahaman, S Ray and V Chatterjee Eur. Phys. J. C 75 190 (2015)

  33. R C Tolman Phys. Rev 55 364 (1939)

  34. Y B Zeldovich Sov. Phys. JETP 14 1143 (1962)

  35. C W Misner and H S Zapolsky Phys. Rev. Lett. 12 635 (1964)

    Article  ADS  Google Scholar 

  36. M S R Delgaty and K Lake Comput. Phys. Commun. 115 395 (1998)

    Article  ADS  Google Scholar 

  37. P Fuloria and M C Durgapal Astrophys. Space Sci. 314 249 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

FR and SR are thankful to the Inter-University Centre for Astronomy and Astrophysics (IUCAA), Pune, India, for providing the Visiting Associateship under which a part of this work was carried out. SR also thanks the Institute of Mathematical Sciences (IMSc), Chennai, India, and the Centre for Theoretical Studies (CTS), IIT Kharagpur, India, for providing short-term visits under which a part of this work has been completed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saibal Ray.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aziz, A., Chowdhury, S.R., Deb, D. et al. Analytic radiation model for perfect fluid under homotopy perturbation method. Indian J Phys 95, 1581–1588 (2021). https://doi.org/10.1007/s12648-020-01804-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01804-5

Keywords

Navigation