Skip to main content
Log in

On a Quasi-Bound State in the \(\pmb {{ K^- d}}\) System Caused by Strong Interactions

  • Published:
Few-Body Systems Aims and scope Submit manuscript

Abstract

It was found that NN potential could influence the results of the quasi-bound state search in the \(K^- d\) system, where the corresponding pole is situated close to the threshold. Three-body Faddeev-type calculations of the \(\bar{K}NN - \pi \varSigma N\) system performed with a new model of nucleon-nucleon interaction predict the existence of the quasi-bound \(K^- d\) state caused by strong interactions. Its binding energy is small (1–2 MeV), while the width is comparable with the width of the \(K^- pp\) quasi-bound state (40–60 MeV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. The exact optical potential is the one-channel potential, which provides exactly the same elastic amplitude as the coupled-channel model of interaction (see e.g. [19]).

References

  1. N.V. Shevchenko, Three-body Antikaon–Nucleon systems. Few Body Syst. 58, 6 (2017)

    Article  ADS  Google Scholar 

  2. E.O. Alt, P. Grassberger, W. Sandhas, Reduction of the three-particle collision problem to multi-channel two-particle Lippmann–Schwinger equations. Nucl. Phys. B 2, 167 (1967)

    Article  ADS  Google Scholar 

  3. J. Révai, Three-body calculation of the \(1s\) level shift in kaonic deuterium with realistic \(\bar{K}N\) potentials. Phys. Rev. C 94, 054001 (2016)

    Article  ADS  Google Scholar 

  4. N.V. Shevchenko, J. Révai, Faddeev calculations of the \(\bar{K}NN\) system with chirally-motivated \(\bar{K}N\) interaction. I. Low-energy \(K^- d\) scattering and antikaonic deuterium. Phys. Rev. C 90, 034003 (2014)

    Article  ADS  Google Scholar 

  5. N.V. Shevchenko, J. Haidenbauer, Exact calculations of a quasibound state in the \(\bar{K}\bar{K}N\) system. Phys. Rev. C 92, 044001 (2015)

    Article  ADS  Google Scholar 

  6. P. Grassberger, W. Sandhas, Systematical treatment of the non-relativistic n-particle scattering problem. Nucl. Phys. B 2, 181 (1967)

    Article  ADS  Google Scholar 

  7. J. Révai, N.V. Shevchenko, Faddeev calculations of the \(\bar{K}NN\) system with chirally-motivated \(\bar{K}N\) interaction. II. The \(K^-pp\) quasi-bound state. Phys. Rev. C 90, 034004 (2014)

    Article  ADS  Google Scholar 

  8. K.A. Olive et al. (Particle Data Group), The review of particle physics. Chin. Phys. C 38, 090001 (2014) and 2015 update

  9. N.V. Shevchenko, Near-threshold \(K^- d\) scattering and properties of kaonic deuterium. Nucl. Phys. A 890–891, 50–61 (2012)

    Article  ADS  Google Scholar 

  10. M. Bazzi, SIDDHARTA Collaboration et al. A new measurement of kaonic hydrogen X-rays. Phys. Lett. B 704, 113 (2011)

  11. M. Sakitt et al., Low-energy \(K^-\)-meson interactions in hydrogen. Phys. Rev. 139, B719 (1965)

    Article  Google Scholar 

  12. J.K. Kim, Low-energy \(K^-\)-p interaction and interpretation of the \(1405\)-MeV \(Y^*_0\) resonance as a \(\bar{K}N\) bound state. Phys. Rev. Lett. 14, 29 (1965)

    Article  ADS  Google Scholar 

  13. J.K. Kim, Multichannel phase-shift analysis of \(\bar{K}N\) interaction in the region 0 to 550 MeV/c. Phys. Rev. Lett. 19, 1074 (1967)

    Article  ADS  Google Scholar 

  14. W. Kittel, G. Otter, I. Wacek, The \(K^- \) proton charge exchange interactions at low energies and scattering lengths determination. Phys. Lett. 21, 349 (1966)

    Article  ADS  Google Scholar 

  15. J. Ciborowski et al., Kaon scattering and charged Sigma hyperon production in \(K^- p\) interactions below 300 MeV/c. J. Phys. G 8, 13 (1982)

    Article  ADS  Google Scholar 

  16. D. Evans et al., Charge-exchange scattering in \(K^- p\) interactions below 300 MeV/c. J. Phys. G 9, 885 (1983)

    Article  ADS  Google Scholar 

  17. D.N. Tovee et al., Some properties of the charged \(\Sigma \) hyperons. Nucl. Phys. B 33, 493 (1971)

    Article  ADS  Google Scholar 

  18. R.J. Nowak et al., Charged \(\Sigma \) hyperon production by \(K^-\) meson interactions at rest. Nucl. Phys. B 139, 61 (1978)

    Article  ADS  Google Scholar 

  19. N.V. Shevchenko, One- versus two-pole \(\bar{K}N - \pi \Sigma \) potential: \(K^- d\) scattering length. Phys. Rev. C 85, 034001 (2012)

    Article  ADS  Google Scholar 

  20. G. Alexander et al., Study of the \(\Lambda -N\) system in low-energy \(\Lambda -p\) elastic scattering. Phys. Rev. 173, 1452 (1968)

    Article  ADS  Google Scholar 

  21. B. Sechi-Zorn, B. Kehoe, J. Twitty, R.A. Burnstein, Low-energy \(\Lambda \)-proton elastic scattering. Phys. Rev. 175, 1735 (1968)

    Article  ADS  Google Scholar 

  22. F. Eisele et al., Elastic \(\Sigma ^{\pm } p\) scattering at low energies. Phys. Lett. B 37, 204 (1971)

    Article  ADS  Google Scholar 

  23. R. Engelmann, H. Filthuth, V. Hepp, E. Kluge, Inelastic \(\Sigma ^-p\)-interactions at low momenta. Phys. Lett. 21, 587 (1966)

    Article  ADS  Google Scholar 

  24. V. Hepp, M. Schleich, A new determination of the capture ratio \(r_c = \frac{\Sigma ^- p \rightarrow \Sigma ^0 n}{(\Sigma ^- p \rightarrow \Sigma ^0 n) + (\Sigma ^- p \rightarrow \Lambda ^0 n)}\), the \(\Lambda ^0\)-lifetime and the \(\Sigma ^- - \Lambda ^0\) mass difference. Z. Phys. 214, 71 (1968)

    Article  ADS  Google Scholar 

  25. R.B. Wiringa, V.G.J. Stoks, R. Schiavilla, Accurate nucleon-nucleon potential with charge-independence breaking. Phys. Rev. C 51, 38 (1995)

    Article  ADS  Google Scholar 

  26. P. Doleschall, Private communication

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Shevchenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The work was supported by the Czech GACR Grant 19-19640S.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shevchenko, N.V. On a Quasi-Bound State in the \(\pmb {{ K^- d}}\) System Caused by Strong Interactions. Few-Body Syst 61, 27 (2020). https://doi.org/10.1007/s00601-020-01560-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00601-020-01560-6

Navigation