Skip to main content
Log in

Vortex detection criteria assessment for PIV data in rotorcraft applications

  • Research Article
  • Published:
Experiments in Fluids Aims and scope Submit manuscript

Abstract

The aim of the article is to propose a simple engineering method for identifying and characterizing vortical structures within a flow field measured with a classic two-component PIV measurement system. Some of the most popular vortex detection systems are briefly presented. Of these, many fail if spurious vectors are present within the flow field due to poor PIV image quality or due to particle voids in the vortex core. The chosen method is the Γ2-criterion. The investigated method is robust and reliable, because it is based on the velocity field topology without using velocity derivatives sensitive to the spurious vectors. The method is tested on synthetic velocity fields of ideal vortices and on real PIV velocity field of a four-bladed rotor wake. The synthetic velocity fields reproduce single and multiple vortices to investigate the mutual interaction and the effect on the vortex detection criteria. The synthetic velocity fields have different spatial resolution, noise level, and different particle void to perform a parametric assessment. Other vortex identification schemes are applied for comparison. Information on how to use the criterion for different noise conditions, particle void, and presence of multiple vortices is provided.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29

Similar content being viewed by others

Abbreviations

Ω :

Antisymmetric part of \(\nabla {\varvec{v}}\), [1/s]

σ:

Rotor solidity, σ = 0.116

Ω:

Blade rotational speed, [rad/s]

\(\nabla {\varvec{v}}\) :

Velocity gradient tensor, [1/s]

c :

Blade chord, c = 0.0327 m

D :

Γ2 Domain radius, [−]

d :

Distance between vortices, [m]

d c :

Distance from the vortex centre, [m]

Q :

Q-Criterion, [1/s2]

R :

Blade radius, R = 0.36 m

r :

Radial distance from the centre, [m]

r c :

Vortex core radius, [m]

r v :

Void radius, [m]

S :

Symmetric part of \(\nabla {\varvec{v}}\), [1/s]

\({\varvec{v}}\) :

Velocity vector

u, v, w :

Cartesian velocity components, [m/s]

V θ :

Swirl velocity, [m/s]

x, y, z :

Cartesian coordinate system, [m]

Δ:

Δ-Criterion

ΔL :

Spatial resolution, [m]

ε(dc):

Vortex centre error, %

ε(rc):

Radius core error, %

ε(Vθ):

Swirl velocity error, %

γ:

Circulation, [m2/s]

ω :

\(\overrightarrow{\omega }=\nabla \times \overrightarrow{u}\), [1/S]

Γ2 :

Vortex detection scalar value, [−]

References

  • Agui JC, Jimenez J (1987) On the performance of particle tracking. J Fluid Mech 185:447–468. https://doi.org/10.1017/S0022112087003252

    Article  Google Scholar 

  • Chakraborty P, Balachandar S, Adrian RJ (2005) On the relationships between local vortex identification schemes. J Fluid Mech 535:189–214

    Article  MathSciNet  MATH  Google Scholar 

  • Chong MS (1990) A general classification of three-dimensional flow fields. Phys Fluids A 2:765–777

    Article  MathSciNet  Google Scholar 

  • Conlisk AT (2001) Modern helicopter rotor aerodynamics. Prog Aerosp Sci 37:419–476

    Article  Google Scholar 

  • Dallmann U (1983) Topological structures of three-dimensional flow separation. DFVLR-IB Report No. 221–82 A07

  • De Gregorio F, Visingardi A, Nargi RE (2018) Investigation of a Helicopter Model Rotor Wake interacting with a Cylindrical Sling Load. Proceedings of 44th European Rotorcraft Forum, Delft, The Netherlands, September 18–21

  • Epps BP (2017) Review of vortex identification methods [C]. 55th AIAA Aerospace Sciences Meeting, Grapevine, Texas, USA, DOI: 10.2514/6.2017–0989

  • Gao Y, Liu C (2018) Rortex and comparison with eigenvalue-based vortex identification criteria. Phys Fluids 30:085107

    Article  Google Scholar 

  • Graftieaux L, Michard M, Grosjean N (2001) Combining PIV, POD and vortex identification algorithms for the study of unsteady turbulent swirling flows. Meas Sci Technol 12:1422–1429

    Article  Google Scholar 

  • Helmholtz H (1858) Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen. Journal für die reine und angewandte Mathematik 55:25–55

    MathSciNet  Google Scholar 

  • Hunt JCR, Wray AA and Moin P (1988) Eddies, stream, and convergence zones in turbulent flows. Cent Turbul Res Rep CTR-S88:193–208

  • Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94

    Article  MathSciNet  MATH  Google Scholar 

  • Kolar V (2007) Vortex identification: new requirements and limitation. J Heat Fluid Flow 28:638–652

    Article  Google Scholar 

  • Liu C, Wang Y, Yang Y et al (2016) New omega vortex identification method [J]. Sci China Phys Mech Astron 59(8):684711

    Article  Google Scholar 

  • Liu C, Gao Y, Tian S, Dong X (2018) Rortex—a new vortex vector definition and vorticity tensor and vector decompositions. Phys Fluids 30:035103

    Article  Google Scholar 

  • Liu J, Gao Y, Wang Y, Liu C (2019) Objective Omega vortex identification method. J Hydrodyn 31(3):455–463. https://doi.org/10.1007/s42241-019-0028-y

    Article  Google Scholar 

  • Lugt HJ (1983) Vortex flow in nature and technology. Wiley, Hoboken

    Google Scholar 

  • Martin PB, Pugliese GJ, Leishman JG, Anderson SL (2000 ) Stereoscopic PIV measurement in the wake of a hovering rotor. In 56th American Helicopter Society Annual Forum, Virginia Beach, VA, USA, May 2–4

  • Michard M, Favelier T (2004) Développement d’un critère d’identification de structures tourbillonnaires adapté aux mesures de vitesse par PIV. In 9° Congrès Francophone de Vélocimétrie Laser, Bruxelles, September 14–17

  • Mulleners K, Raffel M (2011) The onset of dynamic stall revisited. Exp Fluids 52:779–793

    Article  Google Scholar 

  • Raffel M, Willert CE, Wereley S, Kompenhans J (2007) Particle image velocimetry: a pratical guide. Springer, Berlin. https://doi.org/10.1007/978-3-540-72308-0

    Book  Google Scholar 

  • Raffel M, Kindler K, Mulleners K, Heinecket JT (2012) Particle Image Velocimetry in helicopter aerodynamics-developments, challenges, and trends JAHS-1674-Sep-2012

  • Raffel M, Bauknecht A, Ramasamy M, Yamauchi G, Heineck JT, Jenkins LN (2017) Contributions of particle image velocimetry to helicopter aerodynamics. AIAA J 55(3):2859–2874. https://doi.org/10.2514/1.J055571

    Article  Google Scholar 

  • Robinson SK (1990) A review of vortex structures and associated coherent motions in turbulent boundary layers. Structure of turbulence and drag reduction. Springer, Berlin

    Google Scholar 

  • Robinson SK (1991) Coherent motion in turbulent boundary layer. Annu Rev Fluid Mech 23:601–639

    Article  Google Scholar 

  • Robinson SK, Kline SJ, Spalart PR (1989) A review of quasi-coherent structures in a numerically simulated turbulent boundary layer. NASA Tech, Mem, p 102191

    Google Scholar 

  • Schwarz S, Bauknecht A, Mailänder S, Raffel M (2019) Wake characterization of a free-flying model helicopter in ground effect. J Am Helicopter Soc 64(1):1–16. https://doi.org/10.4050/JAHS.64.012010

    Article  Google Scholar 

  • Scully MP (1975) Computation of helicopter rotor wake geometry and its influence on rotor harmonic airloads. MIT Aeroelastic and Structures Research Laboratory, ASRL TR 178-1

  • van der Wall B, Richard H (2006) Analysis methodology for 3C-PIV data of rotary wing vortices. Exp Fluids 40:798–812. https://doi.org/10.1007/s00348-006-0117-x

    Article  Google Scholar 

  • Vatistas GH (1998) New model for intense self-similar vortices. J Propul Power 14:462–469

    Article  Google Scholar 

  • Visingardi A, De Gregorio F, Schwarz T, Schmid M et al. (2017) Forces on obstacles in rotor wake—a GARTEUR action group, in 43rd European Rotorcraft Forum, Milan, Italy, September 12–15

  • Vollmers H (2001) Detection of vortices and quantitative evaluation of their main parameters from experimental velocity data. Meas Sci Technol 12:1199–1207

    Article  Google Scholar 

  • Vollmers H, Kreplin HP, Meier HU (1983) Separation and vertical type flow around a prolate spheroid—Evaluation of relevant parameters. In Proc. of the AGARD Symposium on Aerodynamics of Vortical Type Flows in Three Dimensions, Rotterdam, AGARDCP-342, p14.1–14.14

  • Wang Y, Yang Y, Yang G, Liu C (2017) DNS study on vortex and vorticity in late boundary layer transition. Comm Comp Phys 22:441–459

    Article  MathSciNet  Google Scholar 

  • Westerweel J, Scarano F (2005) Universal outlier detection for PIV data. Exp Fluids 39:1096–1100

    Article  Google Scholar 

  • Wolf CC, Braukmann JN, Stauber W, Schwermer T, Raffel M (2019) The tip vortex system of a four-bladed rotor in dynamic stall conditions. J Am Helicopter Soc 64(2):1–14. https://doi.org/10.4050/JAHS.64.022005

    Article  Google Scholar 

  • Zhou J, Adrian RJ, Balachandar S, Kendall TM (1999) Mechanisms for generating coherent packets of hairpin vortices in channel flow. J Fluid Mech 387(5):353–396

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the contribution of Manuela Coletta in developing the first release of the software for vortex detection and prof. Gaetano Iuso for the valued support. The authors also appreciate the beneficial discussion with Anthony Gardner during the 45th European Rotorcraft Forum about data void limitation for detection methods that drove to additional investigations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrizio De Gregorio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

De Gregorio, F., Visingardi, A. Vortex detection criteria assessment for PIV data in rotorcraft applications. Exp Fluids 61, 179 (2020). https://doi.org/10.1007/s00348-020-03012-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00348-020-03012-7

Navigation