Skip to main content
Log in

Experimental study of surface buoyant jets in crossflow

  • Original Article
  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The dispersion of surface jets in crossflows such as rivers or channels can cause critical environmental problems in the form of chemical or thermal pollution of these water bodies. The turbulent flow structures occurring in such crossflows play an important role in the mixing of surface jets with the surrounding water bodies. In this study, experimental measurements of the time history of the 3-D velocity field were conducted to better understand the flow structure of surface jets in crossflow conditions. Stereoscopic Particle Image Velocimetry was used to measure the instantaneous spatial and temporal velocity distribution downstream of the jet’s discharge point. In addition to the mean velocity distribution, turbulent flow characteristics such as the turbulent kinetic energy (\(k\)), turbulent kinetic energy dissipation rate (\(\epsilon\)), and turbulent eddy viscosity (\(\nu_{t}\)) were calculated. The formation and evolution of a vortex in the surface jet’s flow structure was detected over the measurement zone. The vortex in the surface jets in crossflow resembled to half of the vortices in a counter-rotating vortex pair (CVP) of submerged jets in crossflows. It can be inferred that the water surface performed like a plane of symmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Jones GR, Nash JD, Doneker RL, Jirka GH (2007) Buoyant surface discharges into water bodies. I: flow classification and prediction methodology. J Hydraul Eng 133:1010–1020

    Article  Google Scholar 

  2. Pratte BD, Baines WD (1967) Profiles of the round turbulent jet in a cross flow. J Hydraul Div 93:53–64

    Google Scholar 

  3. Dunn WE, Policastro AJ, Paddock RA (1975) Water Resources Research Program. Surface thermal plumes: evaluation of mathematical models for the near and complete field

  4. McGuirk JJ, Rodi W (1978) A depth-averaged mathematical model for the near field of side discharges into open-channel flow. J Fluid Mech 86:761–781

    Article  Google Scholar 

  5. McGuirk JJ, Rodi W (1979) Mathematical modelling of three-dimensional heated surface jets. J Fluid Mech 95:609–633

    Article  Google Scholar 

  6. Jirka GH, Stolzenbach KD, Adams EE (1981) Buoyant surface jets. J Hydraul Div 107:1467–1487

    Google Scholar 

  7. Chu VH, Jirka GH (1986) Chapter 25: surface buoyant jets, encyclopedia of fluid mechanics. Houst Tex Gulf Publ Co, Houston, p 155

    Google Scholar 

  8. Wright Steven J (1984) Buoyant jets in density-stratified crossflow. J Hydraul Eng 110:643–656. https://doi.org/10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  9. Jirka GH (2007) Buoyant surface discharges into water bodies. II: jet integral model. J Hydraul Eng 133:1021–1036

    Article  Google Scholar 

  10. Anwar HO (1987) Flow of surface buoyant jet in cross flow. J Hydraul Eng 113:892–904. https://doi.org/10.1061/(ASCE)0733-9429

    Article  Google Scholar 

  11. Gawad STA, McCorquodale JA, Gerges H (1996) Near-field mixing at an outfall. Can J Civ Eng 23:63–75. https://doi.org/10.1139/l96-007

    Article  Google Scholar 

  12. Mahesh K (2013) The interaction of jets with crossflow. Annu Rev Fluid Mech 45:379–407. https://doi.org/10.1146/annurev-fluid-120710-101115

    Article  Google Scholar 

  13. Andreopoulos J, Rodi W (1984) Experimental investigation of jets in a crossflow. J Fluid Mech 138:93–127

    Article  Google Scholar 

  14. Kelso RM, Lim TT, Perry AE (1996) An experimental study of round jets in cross-flow. J Fluid Mech 306:111–144

    Article  Google Scholar 

  15. Camussi R, Guj G, Stella A (2002) Experimental study of a jet in a crossflow at very low Reynolds number. J Fluid Mech 454:113–144

    Article  Google Scholar 

  16. Lai CC, Lee JH (2014) Initial mixing of inclined dense jet in perpendicular crossflow. Environ Fluid Mech 14:25–49

    Article  Google Scholar 

  17. Meftah MB, Malcangio D, De Serio F, Mossa M (2018) Vertical dense jet in flowing current. Environ Fluid Mech 18:75–96

    Article  Google Scholar 

  18. Malcangio D, Ben Meftah M, Chiaia G, De Serio F, Mossa M, Petrillo AF (2016) Experimental studies on vertical dense jets in a crossflow. In: Constantinescu G, Garcia M, Hanes D (eds) River Flow 2016. Taylor & Francis Group, London, pp 890–897

    Chapter  Google Scholar 

  19. Malcangio D, Ben Meftah M, Mossa M (2016) Physical modelling of buoyant effluents discharged into a cross flow. IEEE workshop on environmental, energy, and structural monitoring systems (EESMS). Italy, Bari, pp 192–197

    Google Scholar 

  20. Smith SH, Mungal MG (1998) Mixing, structure and scaling of the jet in crossflow. J Fluid Mech 357:83–122

    Article  Google Scholar 

  21. Haven BA, Kurosaka M (1997) Kidney and anti-kidney vortices in crossflow jets. J Fluid Mech 352:27–64

    Article  Google Scholar 

  22. Cortelezzi L, Karagozian AR (2001) On the formation of the counter-rotating vortex pair in transverse jets. J Fluid Mech 446:347–373

    Article  Google Scholar 

  23. Shan JW, Dimotakis PE (2006) Reynolds-number effects and anisotropy in transverse-jet mixing. J Fluid Mech 566:47–96

    Article  Google Scholar 

  24. Shao D, Law AWK (2010) Mixing and boundary interactions of 30 and 45 inclined dense jets. Environ Fluid Mech 10:521–553

    Article  Google Scholar 

  25. Thompson L, Natsui G, Velez C, Kapat J, Vasu SS (2016) Planar laser-induced fluorescence experiments and modeling study of jets in crossflow. J Fluids Eng 138:081201

    Article  Google Scholar 

  26. Han D, Mungal MG (2003) Simultaneous measurements of velocity and CH distribution. Part II: deflected jet flames. Combust Flame 133:1–17

    Article  Google Scholar 

  27. Han D, Orozco V, Mungal MG (2000) Gross-entrainment behavior of turbulent jets injected obliquely into a uniform crossflow. AIAA J 38:1643–1649

    Article  Google Scholar 

  28. Coussement A, Gicquel O, Degrez G (2012) Large eddy simulation of a pulsed jet in cross-flow. J Fluid Mech 695:1–34

    Article  Google Scholar 

  29. Fric TF, Roshko A (1994) Vortical structure in the wake of a transverse jet. J Fluid Mech 279:1–47. https://doi.org/10.1017/S0022112094003800

    Article  Google Scholar 

  30. Doron P, Bertuccioli L, Katz J, Osborn TR (2001) Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J Phys Oceanogr 31:2108–2134

    Article  Google Scholar 

  31. Hoque MM, Sathe MJ, Mitra S, Joshi JB, Evans GM (2015) Comparison of specific energy dissipation rate calculation methodologies utilising 2D PIV velocity measurement. Chem Eng Sci 137:752–767

    Article  Google Scholar 

  32. Shao D, Law AW-K (2009) Turbulent mass and momentum transport of a circular offset dense jet. J Turbul 10:N40

    Article  Google Scholar 

  33. Abessi O, Roberts PJW (2016) Dense jet discharges in shallow water. J Hydraul Eng 142:04015033. https://doi.org/10.1061/(ASCE)HY.1943-7900.0001057

    Article  Google Scholar 

  34. Wieneke B (2005) Stereo-PIV using self-calibration on particle images. Exp Fluids 39:267–280. https://doi.org/10.1007/s00348-005-0962-z

    Article  Google Scholar 

  35. Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247

    Article  Google Scholar 

  36. Hasselbrink EF, Mungal MG (2001) Transverse jets and jet flames. Part 1. Scaling laws for strong transverse jets. J Fluid Mech 443:1–25

    Article  Google Scholar 

  37. Hasselbrink EF, Mungal MG (2001) Transverse jets and jet flames. Part 2. Velocity and OH field imaging. J Fluid Mech 443:27–68

    Article  Google Scholar 

  38. Zhang L, Yang V (2017) Flow dynamics and mixing of a transverse jet in crossflow—part I: steady crossflow. J Eng Gas Turbines Power 139:082601

    Article  Google Scholar 

  39. Su LK, Mungal MG (2004) Simultaneous measurements of scalar and velocity field evolution in turbulent crossflowing jets. J Fluid Mech 513:1–45

    Article  Google Scholar 

  40. Yuan LL, Street RL, Ferziger JH (1999) Large-eddy simulations of a round jet in crossflow. J Fluid Mech 379:71–104. https://doi.org/10.1017/S0022112098003346

    Article  Google Scholar 

  41. Coletti F, Benson MJ, Ling J, Elkins CJ, Eaton JK (2013) Turbulent transport in an inclined jet in crossflow. Int J Heat Fluid Flow 43:149–160

    Article  Google Scholar 

  42. Fincham AM, Maxworthy T, Spedding GR (1996) Energy dissipation and vortex structure in freely decaying, stratified grid turbulence. Dyn Atmospheres Oceans 23:155–169. https://doi.org/10.1016/0377-0265(95)00415-7

    Article  Google Scholar 

  43. Xu D, Chen J (2013) Accurate estimate of turbulent dissipation rate using PIV data. Exp Therm Fluid Sci 44:662–672

    Article  Google Scholar 

  44. Delafosse A, Collignon M-L, Crine M, Toye D (2011) Estimation of the turbulent kinetic energy dissipation rate from 2D-PIV measurements in a vessel stirred by an axial Mixel TTP impeller. Chem Eng Sci 66:1728–1737

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Gharavi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharavi, A., Mohammadian, A., Nistor, I. et al. Experimental study of surface buoyant jets in crossflow. Environ Fluid Mech 20, 1007–1030 (2020). https://doi.org/10.1007/s10652-020-09737-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-020-09737-7

Keywords

Navigation