Skip to main content
Log in

On \(\epsilon\)-sensitive monotone computations

  • Published:
computational complexity Aims and scope Submit manuscript

Abstract

We show that strong-enough lower bounds on monotone arithmetic circuits or the nonnegative rank of a matrix imply unconditional lower bounds in arithmetic or Boolean circuit complexity. First, we show that if a polynomial \(f\in \mathbb {R}[x_1,\dots , x_n]\) of degree d has an arithmetic circuit of size s then \((x_1+\dots +x_n+1)^d+\epsilon f\) has a monotone arithmetic circuit of size \(O(sd^2+n\log n)\), for some \(\epsilon >0\). Second, if \(f:\{0,1\}^n\rightarrow \{0,1\}\) is a Boolean function, we associate with f an explicit exponential-size matrix M(f) such that the Boolean circuit size of f is at least \(\varOmega (\min _{\epsilon >0}(\mathrm{rk}_{+}(M(f)-\epsilon J))- 2n)\), where J is the all-ones matrix and \(\mathrm{rk}_{+}\) denotes the nonnegative rank of a matrix. In fact, the quantity \(\min _{\epsilon >0}(\mathrm{rk}_{+}(M(f)-\epsilon J))\) characterizes how hard is it to distinguish rejecting and accepting inputs of f by means of a linear program. Finally, we introduce a proof system resembling the monotone calculus of Atserias et al. (J Comput Syst Sci 65:626–638, 2002) and show that similar \(\epsilon \)-sensitive lower bounds on monotone arithmetic circuits imply lower bounds on proof-size in the system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • A. Atserias, A. Dawar & J. Ochremiak (2019). On the power of symmetric linear programs. In 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)

  • Atserias, A., Galesi, N., Pudlák, P.: Monotone simulations of non-monotone proofs. J. of Computer and System Sciences 65, 626–638 (2002)

    Article  MathSciNet  Google Scholar 

  • S. Basu, R. Pollack & M.F. Roy (2006). Algorithms in real algebraic geometry. Springer-Verlag.

  • Beasley, L., Laffey, T.: Real rank versus nonnegative rank. Linear Algebra and its Applications 431(12), 2330–2335 (2009)

    Article  MathSciNet  Google Scholar 

  • G. Braun, S. Fiorini, S. Pokutta & D. Steuer (2012). Approximation Limits of Linear Programs (Beyond Hierarchies). In FOCS, 480–489

  • P. Bürgisser, M. Clausen & M. A. Shokrollahi (1997). Algebraic complexity theory, volume 315 of A series of comprehensive studies in mathematics. Springer

  • D. deCaen, D. Gregory & N. Pullman (1981). The Boolean rank of zero one matrices. In Proceedings of the Third Caribean Conference on Combinatorics and Computing, 169–173

  • Samuel Fiorini, Serge Massar, Sebastian Pokutta, Hans Raj Tiwary & Ronald de Wolf (2011). Linear vs. Semidefinite Extended Formulations: Exponential Separation and Strong Lower Bounds. CoRR arXiv:1111.0837

  • Goos, M., Jain, R., Watson, T.: Extension complexity of independent set polytopes. SIAM J. Comput. 47(1), 241–269 (2018)

    Article  MathSciNet  Google Scholar 

  • Hrubeš, P.: On the nonnegative rank of distance matrices. Information Processing Letters 112(11), 457–461 (2012)

    Article  MathSciNet  Google Scholar 

  • P. Hrubeš (2019). On the complexity of computing a random Boolean function over the reals. ECCC

  • Pavel Hrubeš & Amir Yehudayoff: Homogeneous formulas and symmetric polynomials. Computational Complexity 20(3), 559–578 (2011)

    Article  MathSciNet  Google Scholar 

  • Krajíček, J.: Bounded arithmetic, propositional logic, and complexity theory. Cambridge University Press, USA (1995)

    Book  Google Scholar 

  • N. Nisan (1991). Lower bounds for non-commutative computation. In Proceeding of the 23th STOC, 410–418

  • P. Pudlák & M. de Oliveira Oliveira (2017). Representations of monotone Boolean functions by linear programs. In Proceedings of the 32nd Computational Complexity Conference

  • R. Raz (2004). Multi-linear formulas for Permanent and Determinant are of super-polynomial size. In Proceeding of the 36th STOC, 633–641

  • A. Razborov (1992). On submodular complexity measures. In Boolean functions complexity, 76–83. Cambridge University Press

  • T. Rothvoss (2017). The matching polytope has exponential extension complexity. J. of the ACM 64(6).

  • Thomas Rothvoß (2011). Some 0/1 polytopes need exponential size extended formulations. CoRR arXiv:1105.0036

  • Shamir, E., Snir, M.: On the depth complexity of formulas. Journal Theory of Computing Systems 13(1), 301–322 (1979)

    MathSciNet  MATH  Google Scholar 

  • Amir Shpilka & Avi Wigderson (1999). Depth-3 arithmetic formulae over fields of characteristic zero. In In CCC, 87. IEEE Computer Society

  • Amir Shpilka & Amir Yehudayoff: Arithmetic Circuits: A survey of recent results and open questions. Foundations and Trends in Theoretical Computer Science 5(3), 207–388 (2010)

    MathSciNet  MATH  Google Scholar 

  • L. G. Valiant (1979). Completeness Classes in Algebra. In STOC, 249–261

  • Valiant, L.G.: Negation can be exponentially powerful. Theoretical Computer Science 12, 303–314 (1980)

    Article  MathSciNet  Google Scholar 

  • Valiant, L.G.: Reducibility by algebraic projections. Enseign. Math. 28, 253–268 (1982)

    MathSciNet  MATH  Google Scholar 

  • Valiant, L.G.: Negation is powerless for Boolean slice functions. SIAM J. Comput. 15(2), 531–535 (1986)

    Article  MathSciNet  Google Scholar 

  • S. A. Vavasis (2008). On the complexity of nonnegative matrix factorization. SIAM Journal on Optimization 20(3), 1364-1377

  • I. Wegener (1987). The complexity of Boolean functions

  • Yannakakis, Mihalis: Expressing combinatorial optimization problems by linear programs. Journal of Computer and System Sciences 43(3), 441–466 (1991)

    Article  MathSciNet  Google Scholar 

  • A. Yehudayoff (2019). Separating monotone VP and VNP. In STOC

Download references

Acknowledgements

We thank Pavel Pudla'k for inspiration and Amir Yehudayoff for, unwittingly, making the author to write the paper in the first place. Supported by the GACR grant 19-27871X.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Hrubeš.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hrubeš, P. On \(\epsilon\)-sensitive monotone computations. comput. complex. 29, 6 (2020). https://doi.org/10.1007/s00037-020-00196-6

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s00037-020-00196-6

Keywords

Subject classification

Navigation