Skip to main content
Log in

Nanofiltration Membranes via Layer-by-layer Assembly and Cross-linking of Polyethyleneimine/Sodium Lignosulfonate for Heavy Metal Removal

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

Layer-by-layer (LbL) assembly technology is a facile method for constructing thin film composite membrane. Herein, a novel nanofiltration (NF) membrane was prepared by LbL assembly of polyethyleneimine (PEI) and sodium lignosulfonate (LS) followed by cross-linking. The surface composition, morphology, and property of PEI/LS bilayer were detailedly investigated by FTIR/ATR, XPS, SEM, AFM, and water contact angle test. The PEI/LS bilayer full of amino and hydroxyl groups presents increased roughness and improved hydrophilicity. Moreover, the NF performance of PEI/LS LbL assembly membranes can be modulated by bilayer number, polyelectrolyte concentration, and salt content. The water flux reduced while the salt rejection greatly improved as increasing the bilayer numbers, PEI concentration, or NaCI content. More than 95% MgSO4 and MgCI2, as well as 80% NaCI can be rejected by a NF membrane prepared by 6 PEI/LS bilayers, 1 wt% PEI, 0.5 wt% LS, and 1 mol/L NaCI. Furthermore, this NF membrane can be used to remove more than 95% heavy metal ions (Cd2+, Zn2+, Mn2+, Cr2+, Cu2+, and Ni2+). This work proposed a promising NF membrane by using PEI/LS as low cost polyelectrolytes and facile LbL assembly method, which should receive much attention in water purification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahmed, F. E.; Hashaikeh, R.; Diabat, A.; Hilal, N. Mathematical and optimization modelling in desalination: state-of-the-art and future direction. Desalination2019, 469, 114092.

    CAS  Google Scholar 

  2. Abdel-Fatah, M. A. Nanofiltration systems and applications in wastewater treatment: review article. Ain Shams Eng. J.2018, 9, 3077–3092.

    Google Scholar 

  3. Oatley-Radcliffe, D. L.; Walters, M.; Ainscough, T. J.; Williams, P. M.; Mohammad, A. W.; Hilal, N. Nanofiltration membranes and processes: a review of research trends over the past decade. J. Water Process Eng.2017, 19, 164–171.

    Google Scholar 

  4. Liu, Y.; Lin, B.; Liu, W.; Li, J.; Gao, C.; Pan, Q. Preparation and characterization of a novel nanofiltration membrane with chlorine-tolerant property and good separation performance. RSC Adv.2018, 8, 36430–36440.

    CAS  Google Scholar 

  5. Li, X. L.; Zhu, L P.; Jiang, J. H.; Yi, Z.; Zhu, B. K.; Xu, Y. Y. Hydrophilic nanofiltration membranes with self-polymerized and strongly-adhered polydopamine as separating layer. Chinese J. Polym. Sci.2012, 30, 152–163.

    CAS  Google Scholar 

  6. Qi, Y.; Zhu, L.; Shen, X.; Sotto, A.; Gao, C.; Shen, J. Polythyleneimine-modified original positive charged nanofiltration membrane: removal of heavy metal ions and dyes. Sep. Purif. Technol.2019, 222, 117–124.

    CAS  Google Scholar 

  7. Lin, C. E.; Fang, L. F.; Du, S. Y.; Yao, Z. K.; Zhu, B. K. A novel positively charged nanofiltration membrane formed via simultaneous cross-linking/quaternization of polyfm-phenylene isophthalamide)/polyethyleneimine blend membrane. Sep. Purif. Technol.2019, 212, 101–109.

    CAS  Google Scholar 

  8. Peydayesh, M.; Mohammadi, T.; Bakhtiari, O. Water desalination via novel positively charged hybrid nanofiltration membranes filled with hyperbranched polyethyleneimine modified MWCNT. J. Ind. Eng. Chem.2019, 69, 127–140.

    CAS  Google Scholar 

  9. Hendrix, K.; Vaneynde, M.; Koeckelberghs, G.; Vankelecom, I. F. J. Synthesis of modified polyfether ether ketone) polymer for the preparation of ultrafiltration and nanofiltration membranes via phase inversion. J. Membr. Sci.2013, 447, 96–106.

    CAS  Google Scholar 

  10. Li, H.; Shi, W.; Zhang, H.; Zhou, R.; Qin, X. Preparation of internally pressurized polyamide thin-film composite hollow fiber nanofiltration membrane with high ions selectivity by a facile coating method. Prog. Org. Coat.2019, 105456.

    Google Scholar 

  11. Wang, J. H.; Wu, Y. L.; Zhang, Y. H.; Zhu, B. K.; Xu, Y. Y. Fabrication and performance of a low operating pressure nanofiltration poly(vinyl chloride) hollow fiber membrane. Chinese J. Polym. Sci.2014, 32, 377–384.

    Google Scholar 

  12. Cheng, J.; Shi, W.; Zhang, L.; Zhang, R. A novel polyester composite nanofiltration membrane formed by interfacial polymerization of pentaerythritol (PE) and trimesoyl chloride (TMC) .Appl.Surf.Sci.2017, 416, 152–159.

    CAS  Google Scholar 

  13. Wang, J.; Wang, Z.; Liu, Y.; Wang, J.; Wang, S. Surface modification of NF membrane with zwitterionic polymer to improve anti-biofouling property. J. Membr. Sci.2016, 514, 407–417.

    CAS  Google Scholar 

  14. Hu, L.; Zhang, S.; Han, R.; Jian, X. Preparation and performance of novel thermally stable polyamide/PPENK composite nanofiltration membranes. Appl. Surf. Sci.2012, 258, 9047–9053.

    CAS  Google Scholar 

  15. Shen, K.; Cheng, C.; Zhang, T.; Wang, X. High performance polyamide composite nanofiltration membranes via reverse interfacial polymerization with the synergistic interaction of gelatin interlayer and trimesoyl chloride. J. Membr. Sci.2019, 588, 117192.

    CAS  Google Scholar 

  16. Huang, Y.; Sun, J.; Wu, D.; Feng, X. Layer-by-layer self-assembled chitosan/PAA nanofiltration membranes. Sep. Purif. Technol.2018, 207, 142–150.

    CAS  Google Scholar 

  17. Su, C.; Ma, S. M.; Liu, G. X.; Yang, S. G. Dewetting behavior of hydrogen bonded polymer complex film under hydrothermal condition. Chinese J. Polym. Sci.2018, 36, 1036–1042.

    CAS  Google Scholar 

  18. Liu, K.; Yang, C. M.; Yang, B. M.; Zhang, L.; Huang, W. C.; Ouyang, X. P.; Qi, F. G.; Zhao, N.; Bian, F. G. Directed self-assembly of vertical PS-b-PMMA nanodomains grown on multilayered polyelectrolyte films. Chinese J. Polym. Sci.2020, 38, 92–99.

    CAS  Google Scholar 

  19. Zhang, X.; Xu, Y.; Zhang, X.; Wu, H.; Shen, J.; Chen, R.; Xiong, Y.; Li, J.; Guo, S. Progress on the layer-by-layer assembly of multilayered polymer composites: strategy, structural control and applications. Prog. Polym. Sci.2019, 89, 76–107.

    CAS  Google Scholar 

  20. Guo, D.; Xiao, Y.; Li, T.; Zhou, Q.; Shen, L.; Li, R.; Xu, Y.; Lin, H. Fabrication of high-performance composite nanofiltration membranes for dye wastewater treatment: mussel-inspired layer-by-layer self-assembly. J. Colloid Interf. Sci.2020, 560, 273–283.

    CAS  Google Scholar 

  21. Zheng, M.; Long, T. J.; Chen, X. L.; Sun, J. Q. Humidity-responsive bilayer actuators comprised of porous and nonporous polyfacrylic acid)/poly(allylamine hydrochloride) films. Chinese J. Polym. Sci.2018, 37, 52–58.

    Google Scholar 

  22. Silva, V.; Martfn, A.; Martfnez, F.; Malfeito, J.; Pradanos, P.; Palacio, L.; Hernandez, A. Electrical characterization of NF membranes a modified model with charge variation along the pores. Chem. Eng. Sci.2011, 66, 2898–2911.

    CAS  Google Scholar 

  23. Lv, Y.; Du, Y.; Chen, Z. X.; Qiu, W. Z.; Xu, Z. K. Nanocomposite membranes of polydopamine/electropositive nanoparticles/ polyethyleneimine for nanofiltration. J. Membr. Sci.2018, 545, 99–106.

    CAS  Google Scholar 

  24. An, G. A.; Ozcan, Z. A novel approach for stable anion exchange membrane: self-assembled multilayer formation on the membrane via LbL method. Synth. Met.2016, 220, 269–275.

    Google Scholar 

  25. Ilyas, S.; Abtahi, S. M.; Akkilic, N.; Roesink, H. D. W.; de Vos, W. M. Weak polyelectrolyte multilayers as tunable separation layers for micro-pollutant removal by hollow fiber nanofiltration membranes. J. Membr. Sci.2017, 537, 220–228.

    CAS  Google Scholar 

  26. Naseem, A.; Tabasum, S.; Zia, K. M.; Zuber, M.; Ali, M.; Noreen, A. Lignin-derivatives based polymers, blends and composites: a review. Int. J. Biol. Macromol.2016, 93, 296–313.

    CAS  PubMed  Google Scholar 

  27. Zhang, W.; Yang, P.; Li, X.; Zhu, Z.; Chen, M.; Zhou, X. Electrospun lignin-based composite nanofiber membrane as high-performance absorbent for water purification. Int. J. Biol. Macromol.2019, 141, 747–755.

    CAS  PubMed  Google Scholar 

  28. Ma, J.; Khan, M. A.; Xia, M.; Fu, C.; Zhu, S.; Chu, Y.; Lei, W.; Wang, F. Effective adsorption of heavy metal ions by sodium lignosulfonate reformed montmorillonite. Int. J. Biol. Macromol.2019, 738, 188–197.

    Google Scholar 

  29. Guo, X.; Zhang, S.; Shan, X. Q. Adsorption of metal ions on lignin. J. Hazard Mater.2008, 757, 134–42.

    Google Scholar 

  30. Yang, H. C.; Liao, K. J.; Huang, H.; Wu, Q. Y.; Wan, L S.; Xu, Z. K. Mussel-inspired modification of a polymer membrane for ultrahigh water permeability and oil-in-water emulsion separation. Mater. Chem. A2014, 2, 10225–10230.

    CAS  Google Scholar 

  31. Sun, Q.; Tong, Z.; Wang, C.; Ren, B.; Liu, X.; Zeng, F. Charge density threshold for LbL self-assembly and small molecule diffusion in polyelectrolyte multilayer films. Polymer2005, 46, 4958–4966.

    CAS  Google Scholar 

  32. Rojas, O. J.; Claesson, P, M.; Muller, D.; Neuman, R. D. The effect of salt concentration on adsorption of low-charge-density polyelectrolytes and interactions between polyelectrolyte-coated surfaces. J. Colloid. Interf. Sci.1998, 205, 77–88.

    CAS  Google Scholar 

  33. Zhang, L.; Guo, H.; Sun, J. Salt effects on the structural tailoring of layer-by-layer assembled polyelectrolyte complexes and salt-containing polyelectrolyte films. Thin Solid Films2018, 653, 258–266.

    CAS  Google Scholar 

  34. Samanta, T.; Mukherjee, M. Effect of added salt on morphology of ultrathin polyelectrolyte films. Polymer2012, 53, 5393–5403.

    CAS  Google Scholar 

  35. Gong, X.; Gao, C. Influence of salt on assembly and compression of PDADMAC/PSSMA polyelectrolyte multilayers. Phys. Chem. Chem. Phys.2009, 11, 11577–11586.

    CAS  PubMed  Google Scholar 

  36. McAloney, R. A.; Sinyor, M.; Dudnik, V.; Goh, M. C. Atomic force microscopy studies of salt effects on polyelectrolyte multilayer film morphology. Langmuir2001, 17, 6655–6663.

    CAS  Google Scholar 

  37. Zhang, L.; Zheng, M.; Liu, X.; Sun, J. Layer-by-layer assembly of salt-containing polyelectrolyte complexes for the fabrication of dewetting-induced porous coatings. Langmuir2011, 27, 1346–1352.

    CAS  PubMed  Google Scholar 

  38. Zarei, F.; Moattari, R. M.; Rajabzadeh, S.; Bagheri, M.; Taghizadeh, A.; Mohammadi, T.; Matsuyama, H. Preparation of thin film composite nano-filtration membranes for brackish water softening based on the reaction between functionalized UF membranes and polyethyleneimine. J. Membr. Sci.2019, 588, 117207.

    CAS  Google Scholar 

  39. Yang, Y.; Lan, Q.; Wang, Y. Gradient nanoporous phenolics as substrates for high-flux nanofiltration membranes by layer-by-layer assembly of polyelectrolytes. Chinese J. Chem. Eng.2020, 28, 114–124.

    Google Scholar 

  40. Menne, D.; Kamp, J.; Wong, J. E.; Wessling, M. Precise tuning of salt retention of backwashable polyelectrolyte multilayer hollow fiber nanofiltration membranes. J. Membr. Sci.2016, 499, 396–405.

    CAS  Google Scholar 

  41. Cheng, W.; Liu, C.; Tong, T.; Epsztein, R.; Sun, M.; Verduzco, R.; Ma, J.; Elimelech, M. Selective removal of divalent cations by polyelectrolyte multilayer nanofiltration membrane: role of polyelectrolyte charge, ion size, and ionic strength. J. Membr. Sci.2018, 559, 98–106.

    CAS  Google Scholar 

  42. Zhao, S.; Wang, Z. A loose nano-filtration membrane prepared by coating HPAN UF membrane with modified PEI for dye reuse and desalination. J. Membr. Sci.2017, 524, 214–224.

    CAS  Google Scholar 

  43. DuChanois, R. M.; Epsztein, R.; Trivedi, J. A.; Elimelech, M. Controlling pore structure of polyelectrolyte multilayer nanofiltration membranes by tuning polyelectrolyte-salt interactions. J. Membr. Sci.2019, 581, 413–420.

    CAS  Google Scholar 

  44. Liu, H.; Fu, S.; Li, H.; Zhan, H. Layer-by-layer assembly of lignosulfonates for hydrophilic surface modification. Ind. Crop. Prod.2009, 30, 287–291.

    Google Scholar 

Download references

Acknowledgments

This work was financially supported by Zhejiang Provincial Natural Science Foundation of China (No. LY18E030002), Natural Science Foundation of Ningbo (No. 2018A610111), and K.C. Wong Magna Fund in Ningbo University. We acknowledge Dr. Lijing Zhu, Dr. Linghui Wang, and Dr. Lin Gu for their experimental support and advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing-Yun Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xie, MY., Wang, J. & Wu, QY. Nanofiltration Membranes via Layer-by-layer Assembly and Cross-linking of Polyethyleneimine/Sodium Lignosulfonate for Heavy Metal Removal. Chin J Polym Sci 38, 965–972 (2020). https://doi.org/10.1007/s10118-020-2422-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2422-x

Keywords

Navigation