Skip to main content
Log in

La Modified Fe–Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature

  • Original Article
  • Published:
Catalysis Surveys from Asia Aims and scope Submit manuscript

Abstract

La modified TiO2 prepared by sol–gel method as the support of Fe–Mn/TiO2(xLa) catalyst significantly improved SO2 resistance. La inhibited the growth of TiO2 particle, and led to the obvious layered structure of TiO2 and more mesopores, which accelerated the decomposition of ammonium sulfate. The increase of Brønsted acid sites and the electron transfer between La and active components Fe and Mn in La doped catalysts inhibit the adsorption and oxidation of SO2 on the catalyst, thus improving the SO2 resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Li J, Chang H, Ma L et al (2011) Catal Today 175(1):147–156

    Article  CAS  Google Scholar 

  2. Yang X, Chen H, Qi X (2018) Mod Chem Ind 38(2):20–24

    Google Scholar 

  3. Zhang C, Chen T, Liu H et al (2018) Appl Surf Sci 457:1116–1125

    Article  CAS  Google Scholar 

  4. Chen J, Zhu B, Sun Y et al (2018) J Brazs Chem Soc 29(1):79–87

    CAS  Google Scholar 

  5. Qi G, Yang RT (2003) Appl Catal B 44(3):217–225

    Article  CAS  Google Scholar 

  6. Chen H, Qi X, Liang Y et al (2019) React Kinet Mech Catal 126(1):327–339

    Article  CAS  Google Scholar 

  7. Hou X, Chen H, Liang Y et al (2020) Catal Lett 150(4):1041–1048

    Article  CAS  Google Scholar 

  8. Centeno MA, Malet P, Carrizosa I, Odriozola JA (2000) J Phys Chem B 104:3310–3319

    Article  CAS  Google Scholar 

  9. Centeno MA, Carrizosa I, Odriozola JA (2001) J Alloys Compd 323–324:597

    Article  Google Scholar 

  10. Wu Z, Jin R, Wang H, Liu Y (2009) Catal Commun 10:935–939

    Article  CAS  Google Scholar 

  11. Wu Z, Jin R, Liu Y, Wang H (2008) Catal Commun 9:2217–2220

    Article  CAS  Google Scholar 

  12. Gao C, Shi J, Fan Z et al (2017) Fuel Process Technol 167:322–333

    Article  CAS  Google Scholar 

  13. Liu J, Guo R, Li M et al (2018) Fuel 223:385–393

    Article  CAS  Google Scholar 

  14. Long L, Zhang A, Yang J et al (2014) ACS Appl Mater Inter 19(6):16712–16720

    Article  CAS  Google Scholar 

  15. Reddy BM, Sreekanth PM, Reddy EP (2002) J Phys Chem B 106:5695

    Article  CAS  Google Scholar 

  16. Jin Q, Shen Y, Zhu S et al (2017) J Mater Res 32(12):2438–2445

    Article  CAS  Google Scholar 

  17. Shen B, Ma J, Hu G et al (2012) J Fuel Chem Technol 40(11):1372–1376

    CAS  Google Scholar 

  18. Ma K, Guo K, Li L et al (2019) Catal Commun 128:105719

    Article  CAS  Google Scholar 

  19. Yu J, Guo F, Wang Y et al (2010) Appl Catal B 95(1–2):160–168

    Article  CAS  Google Scholar 

  20. El-Bahy ZM, Ismail AA, Mohamed RM (2009) J Hazard Mater 166(1):138–143

    Article  CAS  PubMed  Google Scholar 

  21. Reszczybaka J, Grzyb T, Sobczak JW et al (2014) Appl Surf Sci 307:333–345

    Article  CAS  Google Scholar 

  22. Wang T, Wan Z, Yang X et al (2018) Fuel Process Technol 169:112–121

    Article  CAS  Google Scholar 

  23. Zhou X, Huan X, Xie A et al (2017) Chem Eng J 326:1074–1085

    Article  CAS  Google Scholar 

  24. Liu S, Chen X (2008) J Hazard Mater 152(1):48–55

    Article  CAS  PubMed  Google Scholar 

  25. Wu Y, Qin L, Zhang G et al (2013) Ind Eng Chem Res 52(47):16698–16708

    Article  CAS  Google Scholar 

  26. Fang D, Xie J, Hu H et al (2015) Chem Eng J 271(1):23–30

    Article  CAS  Google Scholar 

  27. Chen Z, Wang F, Li H et al (2011) Ind Eng Chem Res 51(1):202–212

    Article  CAS  Google Scholar 

  28. Zou Z, Meng M, Li Q et al (2007) Chinese J Inorg Chem 23(7):1213–1219

    CAS  Google Scholar 

  29. Zhang L, Li L, Cao Y et al (2015) Appl Catal B 165:589–598

    Article  CAS  Google Scholar 

  30. Zhu L, Zhong Z, Yang H et al (2017) Environ Technol Lett 38(10):10

    Article  CAS  Google Scholar 

  31. Inhak S, Seunghee Y, Hwangho L et al (2017) Appl Catal B 210(5):421–431

    Google Scholar 

  32. Zhang L, Zhang D, Zhang J et al (2013) Nanoscale 5(20):9821–9829

    Article  CAS  PubMed  Google Scholar 

  33. Sultana A, Sasaki M, Hamada H (2012) Catal Today 185(1):284–289

    Article  CAS  Google Scholar 

  34. Tang C, Wang H, Dong S et al (2018) Catal Today 307:2–11

    Article  CAS  Google Scholar 

  35. Wu Z, Jiang B, Liu Y (2008) Appl Catal B 79(4):347–355

    Article  CAS  Google Scholar 

  36. Ha HP, Maddigapu PR, Pullur AK et al (2008) Appl Catal B 78(3–4):301–308

    Google Scholar 

Download references

Acknowledgments

This work was supported by Foundation of Hebei (in China) Education Department (ZD2015116) and Foundation of Hebei Province of China (B2017209111).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongping Chen or Yinghua Liang.

Ethics declarations

Conflict of Interest

We declare that we do not have any commercial or associative interest that represents a conflict of interest in connection with the work submitted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hou, X., Chen, H., Liang, Y. et al. La Modified Fe–Mn/TiO2 Catalysts to Improve SO2 Resistance for NH3-SCR at Low-Temperature. Catal Surv Asia 24, 291–299 (2020). https://doi.org/10.1007/s10563-020-09309-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10563-020-09309-1

Keywords

Navigation