Skip to main content
Log in

On the Lagrangian version of the Korteweg capillarity system: integrability aspects

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

A Lagrangian version of the classical 1+1-dimensional Korteweg capillarity system is shown to encapsulate as a particular reduction an integrable Boussinesq equation. The associated integrability of the corresponding Eulerian capillarity system is set down. In turn, hidden integrability cases of the generalised Boussinesq equation are recorded associated with reduction of the Eulerian system to the integrable cubic and resonant nonlinear Schrödinger equations together with extensions obtained by application of invariance under a reciprocal transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Chaplygin, S.A.: On gas jets. Sci. Mem. Moscow Univ. Math. Phys. 21, 1–121 (1904)

    Google Scholar 

  2. Tsien, H.S.: Two-dimensional subsonic flow of compressible fluids. J. Aeronaut. Sci. 6, 399–407 (1939)

    MathSciNet  MATH  Google Scholar 

  3. Bateman, H.: The lift and drag functions for an elastic fluid in two-dimensional irrotational flow. Proc. Natl. Acad. Sci. USA 24, 246–251 (1938)

    MATH  Google Scholar 

  4. Bateman, H.: The transformation of partial differential equations. Quart. Appl. Math. 1, 281–296 (1944)

    MathSciNet  MATH  Google Scholar 

  5. Loewner, C.: A transformation theory of partial differential equations of gasdynamics. Natl. Advis. Comm. Aeronaut. Tech. Notes 2065, 1–56 (1950)

    MathSciNet  Google Scholar 

  6. Loewner, C.: Generation of solutions of partial differential equations by composition of infinitesimal Bäcklund transformations. J. Anal. Math. 2, 219–242 (1952)

    MathSciNet  MATH  Google Scholar 

  7. Rogers, C., Shadwick, W.F.: Bäcklund Transformations and Their Applications: Mathematics in Science and Engineering Series. Academic Press, New York (1982)

    MATH  Google Scholar 

  8. Konopelchenko, B.G., Rogers, C.: On 2+1-dimensional nonlinear systems of Loewner-type. Phys. Lett. A 158, 391–397 (1991)

    MathSciNet  Google Scholar 

  9. Konopelchenko, B.G., Rogers, C.: On generalized Loewner systems: novel integrable equations in 2+1-dimensions. J. Math. Phys. 34, 214–242 (1993)

    MathSciNet  MATH  Google Scholar 

  10. Cekirge, H.M., Varley, E.: Large amplitude waves in bounded media I: reflexion and transmission of large amplitude shockless pulses at an interface. Philos. Trans. Roy. Soc. London A 273, 261–313 (1973)

    MATH  Google Scholar 

  11. Schief, W.K., Rogers, C.: Loewner transformations: adjoint and binary Darboux connections. Stud. Appl. Math. 100, 391–422 (1998)

    MathSciNet  MATH  Google Scholar 

  12. Kazakia, J.Y., Venkataraman, R.: Propagation of electromagnetic waves in a nonlinear dielectric slab. Z. Angew. Math. Phys. 26, 61–76 (1975)

    Google Scholar 

  13. Rogers, C., Cekirge, H.M., Askar, A.: Electromagnetic wave propagation in nonlinear dielectric media. Acta Mechanica 26, 59–73 (1977)

    MathSciNet  Google Scholar 

  14. Green, A.E., Zerna, W.: Theoretical Elasticity. Oxford University Press, Clarendon (1968)

    MATH  Google Scholar 

  15. Rogers, C., Saccomandi, G., Vergori, L.: Carroll-type deformations in nonlinear elastodynamics. J. Phys. A: Math. Theor. 47, 205204 (2014)

    MathSciNet  MATH  Google Scholar 

  16. Neuber, H.: Kerbspannungslehre. Springer, Berlin and New York (1958)

    MATH  Google Scholar 

  17. Neuber, H.: Theory of stress concentration for shear-strained prismatical bodies with arbitrary nonlinear stress-strain law. Trans. ASME J. Appl. Mech. 28, 544–550 (1961)

    MathSciNet  MATH  Google Scholar 

  18. Sokolovsky, V.V.: Longitudinal displacement of plastic mass between non-circular cylinders. Prikl. Math. Mech. 23, 732–739 (1959)

    MathSciNet  Google Scholar 

  19. Rogers, C., Schief, W.K.: Integrable structure in the theory of stress concentration in shear-strained nonlinear elastic materials. Stud. Appl. Math. 125, 39–53 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Rogers, C., Schief, W.K., Chow, K.W.: On a novel class of model constitutive laws in nonlinear elasticity: construction via Loewner theory. Theor. Math. Phys. 152, 711–720 (2007)

    MATH  Google Scholar 

  21. Rogers, C.: Integrable substructure in a Korteweg capillarity model: a Kármán-Tsien type constitutive relation. J. Nonlinear Math. Phys. 21, 74–88 (2014)

    MathSciNet  MATH  Google Scholar 

  22. Rogers, C., Schief, W.K.: Ermakov-type systems in nonlinear physics and continuum mechanics. In: Euler, N. (ed.) Nonlinear Systems and Their Remarkable Mathematical Structures. CRC Press, USA (2018)

    Google Scholar 

  23. Rogers, C., Chow, K., Conte, R.: On a capillarity model and the Davey–Stewartson I system: quasi-doubly periodic wave patterns. II Nuova Cimento 122B, 105–112 (2007)

    Google Scholar 

  24. Ustinov, M.D.: Transformation and some solutions of the equation of motion of an ideal gas. Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza no 3, 68–74 (1966)

    Google Scholar 

  25. Nikol’skii, A.A.: Invariant transformation of the equations of motion of an ideal monotonic gas and new classes of their exact solutions. J. Appl. Math. Mech. 27, 740–756 (1963)

    MathSciNet  Google Scholar 

  26. Movsesian, L.A.: On an invariant transformation of equations of one-dimensional unsteady motion of an ideal compressible fluid. PMM 31, 137–141 (1967)

    Google Scholar 

  27. Antanovskii, L.K., Rogers, C., Schief, W.K.: A note on the capillarity model and the nonlinear Schrödinger equation. J. Phys. A: Math. Gen. 30, L555–L557 (1997)

    MATH  Google Scholar 

  28. Rogers, C., Schief, W.K.: The resonant nonlinear Schrödinger equation via an integrable capillarity model. II Nuova Cimento 114B, 1409–1412 (1999)

    Google Scholar 

  29. Rogers, C., Schief, W.K.: The classical Korteweg capillarity system: geometry and invariant transformations. J. Phys. A Math. Theor. 47, 345201 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Korteweg, D.J.: Sur la forme que prennent les e’quations des movvements des fluids si l’on tient compte des forces capillaires par des variations de densité. Arch. Néev. Sci. Exactes II, 1–24 (1901)

    MATH  Google Scholar 

  31. Antanovskii, L.K.: Microscale theory of surface tension. Phys. Rev. E 54, 6285–6290 (1996)

    Google Scholar 

  32. Carles, R., Danchin, R., Saut, J.C.: Madelung, Gross–Pitaevskii and Korteweg. Nonlinearity 25, 2843–2873 (2012)

    MathSciNet  MATH  Google Scholar 

  33. Benzoni-Gavage, S.: Planar travelling waves in capillarity fluids. Differ. Integral Equs. 26, 439–485 (2013)

    MATH  Google Scholar 

  34. Rogers, C., Schief, W.K.: On a Boussinesq capillarity system: Hamiltonian reductions and associated quartic geometries. Stud. Appl. Math. 132, 1–121 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Belashov, VYu., Vladimirov, S.V.: Solitary Waves in Dispersive Complex Media. Theory, Simulation, Application, Springer, Berlin (2005)

    MATH  Google Scholar 

  36. Madelung, E.: Quantentheorie in hydrodynamischer Form. Z. Physik 40, 322–328 (1927)

    MATH  Google Scholar 

  37. Rogers, C., Yip, L.P., Chow, K.W.: A resonant Davey–Stewartson capillarity model system: Soliton generation. Int. J. Nonlinear Sci. Numer. Simul. 10, 397–405 (2009)

    Google Scholar 

  38. Liang, Z.F., Tang, X.Y.: Painlevé analysis and exact solutions of the resonant Davey–Stewartson system. Phys. Lett. A 274, 110–115 (2009)

    MATH  Google Scholar 

  39. Rogers, C., Pashaev, O.K.: On a 2+1-dimensional Whitham–Broer–Kaup system: a resonant NLS connection. Stud. Appl. Math. 127, 141–152 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Pashaev, O.K., Lee, J.H.: Resonant NLS solitons as black holes in Madelung fluid. Mod. Phys. Lett. A 17, 1601–1619 (2002)

    MATH  Google Scholar 

  41. Lee, J.H., Pashaev, O.K., Rogers, C., Schief, W.K.: The resonant nonlinear Schrödinger equation in cold plasma physics: application of Bäcklund–Darboux transformations and superposition principles. J. Plasma Phys. 73, 257–272 (2007)

    Google Scholar 

  42. Pashaev, O.K., Lee, J.H., Rogers, C.: Soliton resonances in a generalised nonlinear Schrödinger equation. J. Phys. A: Math. Theor. 41, 452001–452009 (2008)

    MATH  Google Scholar 

  43. Clarkson, P.A., Kruskal, M.D.: New similarity solutions of the Boussinesq equation. J. Math. Phys. 30, 2201–2213 (1989)

    MathSciNet  MATH  Google Scholar 

  44. Zakharov, V.E.: On stochastization of one-dimensional chains of nonlinear oscillators. Sov. Phys. JETP 38, 108–110 (1974)

    Google Scholar 

  45. Deift, P., Tomei, C., Trubowitz, E.: Inverse scattering and the Boussinesq equation. Commun. Pure Appl. Math. 35, 567–628 (1982)

    MathSciNet  MATH  Google Scholar 

  46. Levi, D., Winternitz, P.: Nonclassical symmetry reduction: example of the Boussinesq equation. J. Phys. A Math. Gen. 22, 2915–2924 (1989)

    MathSciNet  MATH  Google Scholar 

  47. Clarkson, P.A. and Winternitz, P.: Symmetry reduction and exact solutions of nonlinear partial differential equations, in The Painlevé Property. One Century Later (Ed. R. Conte) CRM Series in Mathematical Physics, Spring Verlag, New York 592–660 (1999)

  48. Boussinesq, J.: Théorie de l’intumescance liquid appeleé onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus Acad. Sci., Paris 72, 755–759 (1871)

    MATH  Google Scholar 

  49. Boussinesq, J.: Théorie des ondes et des remous qui se propagent le long d’un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55–108 (1872)

    MathSciNet  MATH  Google Scholar 

  50. Johnson, R.S.: A Modern Introduction to the Mathematical Theory of Water Waves, Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  51. Zabusky, N.J.: A synergetic approach to problems of nonlinear dispersive wave propagation and interaction. In: Ames, W.F. (ed.) Nonlinear Partial Differential Equations, pp. 223–258. Academic Press, New York (1967)

    Google Scholar 

  52. Scott, A.C.: The application of Bäcklund transforms to physical problems. In: Miura, R.M. (ed.) Bäcklund Transformations, Lecture Notes in Mathematics. Springer, Berlin (1974)

    Google Scholar 

  53. Schief, W.K., Rogers, C.: The affinsphären equation, Moutard and Bäcklund transformations. Inverse Probl. 10, 711–731 (1994)

    MATH  Google Scholar 

  54. Rogers, C., Huang, Y.: On an integrable deformed affinsphären equation: a reciprocal gasdynamic connection. Phys. Lett. A 376, 1446–1450 (2012)

    MathSciNet  MATH  Google Scholar 

  55. Rogers, C., Malomed, B.: On Madelung systems in nonlinear optics. A reciprocal invariance. J. Math. Phys. 59, 051506 (2018)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Rogers.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rogers, C. On the Lagrangian version of the Korteweg capillarity system: integrability aspects. Ricerche mat 71, 29–39 (2022). https://doi.org/10.1007/s11587-020-00531-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00531-7

Keywords

Mathematics Subject Classification

Navigation