Skip to main content
Log in

An error bound for the slender body approximation of a thin, rigid fiber sedimenting in Stokes flow

  • Research
  • Published:
Research in the Mathematical Sciences Aims and scope Submit manuscript

Abstract

We investigate the motion of a thin rigid body in Stokes flow and the corresponding slender body approximation used to model sedimenting fibers. In particular, we derive a rigorous error bound comparing a regularized version of the rigid slender body approximation to the classical PDE for rigid motion in the case of a closed loop with constant radius. Our main tool is the slender body PDE framework established by Mori et al. (Commun Pure Appl Math, 2019. https://doi.org/10.1002/cpa.21872; Arch Ration Mech Anal 235(3):1905–1978, 2020), which we adapt to the rigid setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Ainsworth, M., Oden, J.T.: A Posteriori Error Estimation in Finite Element Analysis, vol. 37. Wiley, Hoboken (2011)

    MATH  Google Scholar 

  2. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier–Stokes Equations and Related Models, vol. 183. Springer, Berlin (2012)

    MATH  Google Scholar 

  3. Butler, J.E., Shaqfeh, E.S.: Dynamic simulations of the inhomogeneous sedimentation of rigid fibres. J. Fluid Mech. 468, 205–237 (2002)

    Article  Google Scholar 

  4. Corona, E., Greengard, L., Rachh, M., Veerapaneni, S.: An integral equation formulation for rigid bodies in Stokes flow in three dimensions. J. Comput. Phys. 332, 504–519 (2017)

    Article  MathSciNet  Google Scholar 

  5. Galdi, G.P.: On the steady self-propelled motion of a body in a viscous incompressible fluid. Arch. Ration. Mech. Anal. 148(1), 53–88 (1999)

    Article  MathSciNet  Google Scholar 

  6. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations: Steady-State Problems. Springer, Berlin (2011)

    Book  Google Scholar 

  7. Gonzalez, O., Graf, A.B.A., Maddocks, J.H.: Dynamics of a rigid body in a Stokes fluid. J. Fluid Mech. 519, 133–160 (2004)

    Article  MathSciNet  Google Scholar 

  8. Götz, T.: Interactions of fibers and flow: asymptotics, theory and numerics. Doctoral dissertation, University of Kaiserslautern (2000)

  9. Guazzelli, É.: Sedimentation of small particles: how can such a simple problem be so difficult? C. R. Mécanique 334(8–9), 539–544 (2006)

    Article  Google Scholar 

  10. Guazzelli, É., Hinch, J.: Fluctuations and instability in sedimentation. Ann. Rev. Fluid Mech. 43, 97–116 (2011)

    Article  MathSciNet  Google Scholar 

  11. Gustavsson, K., Tornberg, A.K.: Gravity induced sedimentation of slender fibers. Phys. Fluids 21(12), 123301 (2009)

    Article  Google Scholar 

  12. Johnson, R.E.: An improved slender-body theory for Stokes flow. J. Fluid Mech. 99(02), 411–431 (1980)

    Article  MathSciNet  Google Scholar 

  13. Jung, S., Spagnolie, S., Parikh, K., Shelley, M., Tornberg, A.K.: Periodic sedimentation in a Stokesian fluid. Phys. Rev. E 74(3), 035302 (2006)

    Article  Google Scholar 

  14. Keller, J.B., Rubinow, S.I.: Slender-body theory for slow viscous flow. J. Fluid Mech. 75(4), 705–714 (1976)

    Article  Google Scholar 

  15. Li, L., Manikantan, H., Saintillan, D., Spagnolie, S.E.: The sedimentation of flexible filaments. J. Fluid Mech. 735, 705–736 (2013)

    Article  MathSciNet  Google Scholar 

  16. Manikantan, H., Li, L., Spagnolie, S.E., Saintillan, D.: The instability of a sedimenting suspension of weakly flexible fibres. J. Fluid Mech. 756, 935–964 (2014)

    Article  MathSciNet  Google Scholar 

  17. Mitchell, W.H., Spagnolie, S.E.: Sedimentation of spheroidal bodies near walls in viscous fluids: glancing, reversing, tumbling and sliding. J. Fluid Mech. 772, 600–629 (2015)

    Article  MathSciNet  Google Scholar 

  18. Mori, Y., Ohm, L., Spirn, D.: Theoretical justification and error analysis for slender body theory. Commun Pure Appl. Math (2019). https://doi.org/10.1002/cpa.21872

    Article  MATH  Google Scholar 

  19. Mori, Y., Ohm, L., Spirn, D.: Theoretical justification and error analysis for slender body theory with free ends. Arch. Ration. Mech. Anal. 235(3), 1905–1978 (2020)

    Article  MathSciNet  Google Scholar 

  20. Park, J., Metzger, B., Guazzelli, É., Butler, J.E.: A cloud of rigid fibres sedimenting in a viscous fluid. J. Fluid Mech. 648, 351–362 (2010)

    Article  Google Scholar 

  21. Saintillan, D., Darve, E., Shaqfeh, E.S.: A smooth particle-mesh Ewald algorithm for Stokes suspension simulations: the sedimentation of fibers. Phys. Fluids 17(3), 033301 (2005)

    Article  Google Scholar 

  22. Shelley, M.J., Ueda, T.: The Stokesian hydrodynamics of flexing, stretching filaments. Phys. D 146(1), 221–245 (2000)

    Article  MathSciNet  Google Scholar 

  23. Shin, M., Koch, D.L., Subramanian, G.: Structure and dynamics of dilute suspensions of finite-Reynolds-number settling fibers. Phys. Fluids 21(12), 123304 (2009)

    Article  Google Scholar 

  24. Tornberg, A.K., Gustavsson, K.: A numerical method for simulations of rigid fiber suspensions. J. Comput. Phys. 215(1), 172–196 (2006)

    Article  MathSciNet  Google Scholar 

  25. Tornberg, A.K., Shelley, M.J.: Simulating the dynamics and interactions of flexible fibers in Stokes flows. J. Comput. Phys. 196(1), 8–40 (2004)

    Article  MathSciNet  Google Scholar 

  26. Weinberger, H.: Variational properties of steady fall in Stokes flow. J. Fluid Mech. 52(2), 321–344 (1972)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This research was supported in part by NSF Grant DMS-1620316, DMS-1516978, and DMS-1907583, awarded to Y.M., and a Torske Klubben Fellowship, awarded to L.O. L.O. also thanks Dallas Albritton for helpful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurel Ohm.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here, we provide proofs for the \(L^2(\Gamma _\epsilon )\) trace inequality (Lemma 5) and the higher regularity estimate (Lemma 9).

We first recall the following lemma, which will be used throughout “Appendix.”

Lemma 11

(Sobolev inequality) Let \(\varOmega _{\epsilon }=\mathbb {R}^3\backslash \overline{\varSigma _{\epsilon }}\) be as in Sect. 2.1. For any \({\varvec{u}}\in D^{1,2}(\varOmega _{\epsilon })\), we have

$$\begin{aligned} \Vert {\varvec{u}}\Vert _{L^6(\varOmega _{\epsilon })} \le C\Vert \nabla {\varvec{u}}\Vert _{L^2(\varOmega _{\epsilon })}, \end{aligned}$$
(A.1)

where C depends only on \(c_\Gamma \) and \(\kappa _{\max }\).

The proof of \(\epsilon \)-independence of C appears in Appendix A.2.4 of [18].

1.1 Proof of Lemma 5

The proof of the \(L^2(\Gamma _\epsilon )\) trace inequality follows the same outline as the proof of Lemma 4, contained in Appendix A.2.1 of [18]. In particular, using the \(\epsilon \)-independent \(C^2\)-diffeomorphisms \(\psi _j\) (defined in Appendix A.2.1, [18]) which map segments of the curved slender body \(\varSigma _\epsilon \) to a straight cylinder, it suffices to show the \(\sqrt{\epsilon }\left|\log \epsilon \right|\) dependence of the trace constant for a straight cylinder.

Accordingly, let \(\mathcal {D}_\rho \subset \mathbb {R}^2\) denote the open disk of radius \(\rho \) in \(\mathbb {R}^2\), centered at the origin, and, for some \(a<\infty \), define the cylindrical surface \(\Gamma _{\epsilon ,a}=\partial \mathcal {D}_\epsilon \times [-a,a]\) and the cylindrical shell \(\mathcal {C}_{\epsilon ,a}= (\mathcal {D}_1\backslash \overline{\mathcal {D}_\epsilon }) \times [-a,a]\). Consider the function space

$$\begin{aligned} D^{1,2}_\Gamma (\mathcal {C}_{\epsilon ,a})= \big \{ {\varvec{u}}\in D^{1,2}(\mathcal {C}_{\epsilon ,a}) \; : \; {\varvec{u}}\big |_{\partial \mathcal {C}_{\epsilon ,a}\backslash \Gamma _{\epsilon ,a}} = 0 \big \}. \end{aligned}$$

As in the proof of Lemma 4, it suffices to show the \(\sqrt{\epsilon }\left|\log \epsilon \right|\) dependence of the \(L^2(\Gamma _{\epsilon ,a})\) trace constant for functions belonging to \(D^{1,2}_\Gamma (\mathcal {C}_{\epsilon ,a})\).

By estimate (A.4) in [18], any \({\varvec{u}}\in C^1(\mathcal {C}_{\epsilon ,a}) \cap C^0(\overline{\mathcal {C}_{\epsilon ,a}})\cap D^{1,2}_\Gamma (\mathcal {C}_{\epsilon ,a})\) satisfies

$$\begin{aligned} \left|\mathrm{Tr}({\varvec{u}}) \right|^2 \le \left|\log \epsilon \right| \int _\epsilon ^1 \left|\frac{\partial {\varvec{u}}}{\partial \rho } \right|^2 \rho \, {\text {d}}\rho . \end{aligned}$$

Then, noting that the surface element on \(\Gamma _{\epsilon ,a}\) is simply \(\epsilon \), we have

$$\begin{aligned} \left\Vert \mathrm{Tr}({\varvec{u}}) \right\Vert _{L^2(\Gamma _{\epsilon ,a})}^2&= \int _{-a}^a \int _0^{2\pi } \left|\mathrm{Tr}({\varvec{u}}) \right|^2 \epsilon \, {\text {d}}\theta \, {\text {d}}s \\&\le \epsilon \left|\log \epsilon \right| \int _{-a}^a \int _0^{2\pi }\int _\epsilon ^1 \left|\frac{\partial {\varvec{u}}}{\partial \rho } \right|^2 \rho \, {\text {d}}\rho \, {\text {d}}\theta \, {\text {d}}s \le \epsilon \left|\log \epsilon \right|\left\Vert \nabla {\varvec{u}} \right\Vert _{L^2(\mathcal {C}_{\epsilon ,a})}^2. \end{aligned}$$

The same result for \({\varvec{u}}\in D^{1,2}_\Gamma (\mathcal {C}_{\epsilon ,a})\) follows by density.

1.2 Proof of Lemma 9

To determine the \(\epsilon \)-dependence of the constant in (5.3), it suffices to work locally near the slender body surface and show that Lemma 9 holds within an \(\epsilon \)-independent region about the slender body centerline. We define the region

$$\begin{aligned} \mathcal {O} = \big \{{\varvec{x}}\in \varOmega _{\epsilon } \; : \; {\varvec{x}}= {\varvec{X}}(s) + \rho {\varvec{e}}_{\rho }(s,\theta ), \quad \epsilon< \rho <r_{\max } \big \}, \end{aligned}$$
(A.2)

where \(r_{\max }\) is as in Sect. 2.1. Within \(\mathcal {O}\), we can use the orthonormal frame (2.2). We will use the notation \(\partial _s,\partial _\theta ,\partial _\rho \) to denote derivatives \(\partial /\partial s\), \(\partial /\partial \theta \), \(\partial /\partial \rho \) with respect to the variables \(s,\theta ,\rho \), defined with respect to the orthonormal frame. We verify the \(\epsilon \)-dependence in the bound for \(\nabla ^2{\varvec{u}}^{\mathrm{p}}\) and \(\nabla p^{\mathrm{p}}\) in two parts: we first show an \(L^2\) bound for derivatives \(\nabla (\partial _s{\varvec{u}}^{\mathrm{p}})\), \(\nabla (\partial _\theta {\varvec{u}}^{\mathrm{p}})\), \(\partial _s p^{\mathrm{p}}\), and \(\partial _\theta p^{\mathrm{p}}\) in directions tangent to the slender body surface \(\Gamma _\epsilon \), and then use these bounds to estimate the derivatives \(\nabla (\partial _\rho {\varvec{u}}^{\mathrm{p}})\), \(\partial _\rho p^{\mathrm{p}}\) normal to \(\Gamma _\epsilon \).

We begin by estimating the tangential derivatives \(\nabla (\partial _s{\varvec{u}}^{\mathrm{p}})\) and \(\nabla (\partial _\theta {\varvec{u}}^{\mathrm{p}})\). Since the derivatives \(\partial _s\) and \(\partial _\theta \) with respect to the orthonormal frame (2.2) do not commute with the “straight” differential operators \(\nabla \) and \(\mathrm{{div}\,}\), we will need to make use of the following commutator bounds.

Proposition 1

(Commutator estimates) For any function \({\varvec{u}}\in D^{1,2}_0(\mathcal {O})\) and for each of the differential operators \(D=\mathrm{{div}\,},\, \nabla ,\, \mathcal {E}(\cdot )\), the following commutator estimates hold:

$$\begin{aligned} \left\Vert [D,\partial _\theta ]{\varvec{u}} \right\Vert _{L^2(\mathcal {O})}&\le C\left\Vert \nabla {\varvec{u}} \right\Vert _{L^2(\mathcal {O})}, \quad \left\Vert [D,\partial _s]{\varvec{u}} \right\Vert _{L^2(\mathcal {O})} \le C\left\Vert \nabla {\varvec{u}} \right\Vert _{L^2(\mathcal {O})}, \end{aligned}$$

where the constant C depends only on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\).

Proof

We begin by denoting

$$\begin{aligned} {\varvec{e}}_\theta (s,\theta )&= -\sin \theta {\varvec{e}}_{n_1}(s) + \cos \theta {\varvec{e}}_{n_2}(s),\\ u_\rho&= {\varvec{u}}\cdot {\varvec{e}}_\rho , \; u_\theta ={\varvec{u}}\cdot {\varvec{e}}_\theta , \; u_s = {\varvec{u}}\cdot {\varvec{e}}_t. \end{aligned}$$

Then, with respect to the orthonormal frame (2.2), the divergence and gradient are given by

$$\begin{aligned} \mathrm{{div}\,}{\varvec{u}}&= \frac{1}{1-\rho \widehat{\kappa }} \bigg ( \frac{1}{\rho } \frac{\partial (\rho (1-\rho \widehat{\kappa })u_\rho )}{\partial \rho } + \frac{1}{\rho }\frac{\partial ((1-\rho \widehat{\kappa })u_\theta )}{\partial \theta } + \frac{\partial u_s}{\partial s} \bigg ), \\ \nabla {\varvec{u}}&= {\varvec{e}}_\rho (s,\theta )\frac{\partial {\varvec{u}}}{\partial \rho }^{\mathrm{T}} + {\varvec{e}}_\theta (s,\theta )\frac{1}{\rho }\frac{\partial {\varvec{u}}}{\partial \theta }^{\mathrm{T}} + {\varvec{e}}_t(s)\frac{1}{1-\rho \widehat{\kappa }} \bigg (\frac{\partial {\varvec{u}}}{\partial s} -\kappa _3 \frac{\partial {\varvec{u}}}{\partial \theta } \bigg )^{\mathrm{T}}, \end{aligned}$$

where

$$\begin{aligned} \widehat{\kappa }(s,\theta ) = \kappa _1(s)\cos \theta + \kappa _2(s)\sin \theta . \end{aligned}$$
(A.3)

Direct computation of the commutators yields

$$\begin{aligned}{}[\mathrm{{div}\,},\partial _\theta ]{\varvec{u}}&= \frac{(\partial _\theta \widehat{\kappa })}{1-\rho \widehat{\kappa }}\bigg ( \rho \,\mathrm{{div}\,}{\varvec{u}}- \frac{1}{\rho }\frac{\partial }{\partial \rho } \big (\rho ^2 u_\rho \big ) - \frac{\partial u_\theta }{\partial \theta } \bigg ) - \frac{(\partial _\theta ^2\widehat{\kappa })}{1-\rho \widehat{\kappa }}u_\theta , \\ [\mathrm{{div}\,},\partial _s]{\varvec{u}}&= \frac{(\partial _s\widehat{\kappa })}{1-\rho \widehat{\kappa }}\bigg ( \rho \,\mathrm{{div}\,}{\varvec{u}}- \frac{1}{\rho }\frac{\partial }{\partial \rho } \big (\rho ^2 u_\rho \big ) - \frac{\partial u_\theta }{\partial \theta } \bigg ) - \frac{(\partial _\theta \partial _s\widehat{\kappa })}{1-\rho \widehat{\kappa }}u_\theta , \\ [\nabla ,\partial _\theta ]{\varvec{u}}&= {\varvec{e}}_\theta \frac{\partial {\varvec{u}}}{\partial \rho }^{\mathrm{T}} - {\varvec{e}}_\rho \frac{1}{\rho }\frac{\partial {\varvec{u}}}{\partial \theta }^{\mathrm{T}} + {\varvec{e}}_t\frac{\rho (\partial _\theta \widehat{\kappa })}{(1-\rho \widehat{\kappa })^2} \bigg (\frac{\partial {\varvec{u}}}{\partial s} -\kappa _3 \frac{\partial {\varvec{u}}}{\partial \theta } \bigg )^{\mathrm{T}}, \\ [\nabla ,\partial _s]{\varvec{u}}&= (\partial _s{\varvec{e}}_\rho )\frac{\partial {\varvec{u}}}{\partial \rho }^{\mathrm{T}} + (\partial _s{\varvec{e}}_\theta )\frac{1}{\rho }\frac{\partial {\varvec{u}}}{\partial \theta }^{\mathrm{T}} + \bigg ({\varvec{e}}_t \frac{\rho (\partial _s\widehat{\kappa })}{1-\rho \widehat{\kappa }}+(\partial _s{\varvec{e}}_t) \bigg )\\&\qquad \frac{1}{1-\rho \widehat{\kappa }} \bigg (\frac{\partial {\varvec{u}}}{\partial s} -\kappa _3 \frac{\partial {\varvec{u}}}{\partial \theta } \bigg )^{\mathrm{T}}. \end{aligned}$$

Using (A.3) and the orthonormal frame ODEs (2.2), we have

$$\begin{aligned} \left|\partial _\theta \widehat{\kappa } \right|&= \left|-\kappa _1\sin \theta + \kappa _2\cos \theta \right|\le \kappa _{\max }, \quad \left|\partial _s \widehat{\kappa } \right| = \left|\kappa _1'\cos \theta +\kappa _2'\sin \theta \right|\\&\le \xi _{\max } + 2(\kappa _{\max }+\pi ), \\ \left|\partial _\theta ^2\widehat{\kappa } \right|&= \left|-\widehat{\kappa } \right|\le \kappa _{\max }, \quad \left|\partial _\theta \partial _s \widehat{\kappa } \right| = \left|-\kappa _1'\sin \theta + \kappa _2'\cos \theta \right|\\&\le \xi _{\max }+ 2(\kappa _{\max }+\pi ), \\ \left|\partial _s {\varvec{e}}_\rho \right|&= \left|-\widehat{\kappa }{\varvec{e}}_t + \kappa _3{\varvec{e}}_\theta \right|\le \kappa _{\max } +\pi , \quad \left|\partial _s{\varvec{e}}_\theta \right| = \left|-(\partial _\theta \widehat{\kappa }){\varvec{e}}_t -\kappa _3{\varvec{e}}_t \right|\\&\le \kappa _{\max } +\pi , \\ \left|\frac{1}{1-\rho \widehat{\kappa }} \right|&\le \frac{1}{1- r_{\max }\kappa _{\max }(\cos \theta +\sin \theta ) } \le \frac{1}{1- \frac{1}{2\kappa _{\max }}\kappa _{\max }\sqrt{2} } \le 4 . \end{aligned}$$

Finally, noting that, by Lemma 11,

$$\begin{aligned} \left\Vert u_\theta \right\Vert _{L^2(\mathcal {O})} \le \left|\mathcal {O} \right|^{1/3} \left\Vert {\varvec{u}} \right\Vert _{L^6(\mathcal {O})} \le C\left\Vert \nabla {\varvec{u}} \right\Vert _{L^2(\mathcal {O})}, \end{aligned}$$

the desired \(L^2(\varOmega )\) bounds follow for each of \(D=\mathrm{{div}\,},\nabla \). The estimate for the symmetric gradient \(\mathcal {E}({\varvec{u}})\) then follows from the gradient commutator bound. \(\square \)

Now, to derive an estimate for \(\nabla (\partial _s{\varvec{u}}^{\mathrm{p}})\), we will make use of Definition 3 with a particular test function \({\varvec{\varphi }}\), which we will construct here. First, we want our test function to be supported only within \(\mathcal {O}\). We define a smooth cutoff function

$$\begin{aligned} \psi (\rho ) = {\left\{ \begin{array}{ll} 1, &{} \rho < r_{\max }/4, \\ 0, &{} \rho > r_{\max }/2, \end{array}\right. } \quad \left|\frac{\partial \psi }{\partial \rho } \right| \le C, \end{aligned}$$
(A.4)

where C depends only on \(r_{\max }\). Note that \(\psi (\rho )\) commutes with both \(\partial _\theta \) and \(\partial _s\).

We would like to use \(\partial _s^2(\psi {\varvec{u}}^{\mathrm{p}})\) as a test function in Definition 3, but it will be more convenient to work with a function which vanishes on \(\Gamma _\epsilon \). We therefore construct a correction \({\varvec{g}}\in C^2(\varOmega _\epsilon )\) supported only in \(\mathcal {O}\) and satisfying

$$\begin{aligned} {\varvec{g}}\big |_{\Gamma _\epsilon } = (\partial _s {\varvec{u}}^{\mathrm{p}})\big |_{\Gamma _\epsilon } = {\varvec{\omega }}^{\mathrm{p}}\times {\varvec{e}}_t(s), \quad \left\Vert \nabla {\varvec{g}} \right\Vert _{L^2(\mathcal {O})} \le C\left|{\varvec{\omega }} \right|, \end{aligned}$$
(A.5)

where C depends on \(c_\Gamma \) and \(\kappa _{\max }\). To build \({\varvec{g}}\), we follow a similar construction used in Section 4.1 of [18]. We define

$$\begin{aligned} {\varvec{g}}_0(\rho ,\theta ,s) = {\left\{ \begin{array}{ll} {\varvec{\omega }}^{\mathrm{p}}\times {\varvec{e}}_t(s) &{} \text {if } \rho <4\epsilon , \\ 0 &{} \text {otherwise} \end{array}\right. } \end{aligned}$$

and take

$$\begin{aligned} {\varvec{g}}(\rho ,\theta ,s):= \phi _\epsilon (\rho ){\varvec{g}}_0(\rho ,\theta ,s), \end{aligned}$$

where \(\phi _\epsilon (\rho )\) is the smooth cutoff defined in (4.3)–(4.4). Note that \({\varvec{g}}\in C^2\) and is supported within the region

$$\begin{aligned} \mathcal {O}_\epsilon := \big \{ {\varvec{X}}(s) + \rho {\varvec{e}}_\rho (s,\theta ) \; : \; s\in \mathbb {T}, \, \epsilon \le \rho \le 4\epsilon , \, 0\le \theta <2\pi \big \}, \end{aligned}$$

where \(\left|\mathcal {O}_\epsilon \right| \le C\epsilon ^2\). Then, using (4.4) and (2.2), we have

$$\begin{aligned} \left\Vert \nabla {\varvec{g}} \right\Vert _{L^2(\mathcal {O})}&\le \sqrt{\left|\mathcal {O}_\epsilon \right|}\left\Vert \nabla {\varvec{g}} \right\Vert _{C(\mathcal {O}_\epsilon )} \\&\le \sqrt{\left|\mathcal {O}_\epsilon \right|}\bigg ( \left\Vert \frac{\partial \phi _\epsilon }{\partial \rho } \right\Vert _{C(\mathcal {O}_\epsilon )}\left\Vert {\varvec{g}}_0 \right\Vert _{C(\mathcal {O}_\epsilon )}+ \left\Vert \frac{1}{1-\rho \widehat{\kappa }}\frac{\partial {\varvec{g}}_0}{\partial s} \right\Vert _{C(\mathcal {O}_\epsilon )} \bigg ) \le C\left|{\varvec{\omega }}^{\mathrm{p}} \right|. \end{aligned}$$

Now, we could just use \(\partial _s(\partial _s(\psi {\varvec{u}}^{\mathrm{p}}) -{\varvec{g}})\) as a test function in Definition 3, but it will actually be useful to include a second correction term in the following way. We consider \({\varvec{z}}\in D^{1,2}_0(\mathcal {O})\) satisfying

$$\begin{aligned} \begin{aligned} \mathrm{{div}\,}{\varvec{z}}&= \mathrm{{div}\,}(\psi \partial _s{\varvec{u}}^{\mathrm{p}} -{\varvec{g}}) \quad \text {in } \mathcal {O}, \\ \left\Vert \nabla {\varvec{z}} \right\Vert _{L^2(\mathcal {O})}&\le C\left\Vert \mathrm{{div}\,}(\psi \partial _s{\varvec{u}}^{\mathrm{p}} -{\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} \end{aligned} \end{aligned}$$
(A.6)

for C depending only on \(c_\Gamma \) and \(\kappa _{\max }\). We know that such a \({\varvec{z}}\) exists due to [6], Section III.3, and the constant C is independence of \(\epsilon \) due to Appendix A.2.5 of [18]. Furthermore, since \(\mathrm{{div}\,}{\varvec{u}}^{\mathrm{p}}=0\), by Proposition 1 we have

$$\begin{aligned} \left\Vert \mathrm{{div}\,}(\psi \partial _s{\varvec{u}}^{\mathrm{p}}-{\varvec{g}}) \right\Vert _{L^2(\mathcal {O})}&\le \left\Vert \mathrm{{div}\,}(\partial _\theta {\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}+ C\left\Vert \partial _\theta {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}+\left\Vert \nabla {\varvec{g}} \right\Vert _{L^2(\mathcal {O})} \\&\le \left\Vert [\mathrm{{div}\,},\partial _\theta ]{\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + C\left\Vert \partial _\theta {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + C\left|{\varvec{\omega }}^{\mathrm{p}} \right| \\&\le C\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + C\left|{\varvec{\omega }}^{\mathrm{p}} \right|. \end{aligned}$$

Here, we have also used that \(\left\Vert \partial _\theta {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \le \left\Vert \rho \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \le r_{\max }\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}\). In particular, \({\varvec{z}}\) satisfying (A.6) also satisfies

$$\begin{aligned} \left\Vert \nabla {\varvec{z}} \right\Vert _{L^2(\mathcal {O})} \le C\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + C\left|{\varvec{\omega }}^{\mathrm{p}} \right|. \end{aligned}$$
(A.7)

Using extension by zero to consider \({\varvec{z}}\) as a function over all \(\varOmega _\epsilon \), we can now construct our desired test function for use in Definition 3. In particular, we will use the function \(\partial _s(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}})\) in place of \({\varvec{\varphi }}\) in Definition 3. Note that by definition of \({\varvec{z}}\), this function may only belong to \(L^2(\varOmega _\epsilon )\). In this case, we can make sense of the following integration-by-parts argument using finite differences rather than full derivatives (see [2], Section III.2.7 for construction of finite difference operators along a curved boundary). Thus, we really only need \(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}\in D^{1,2}(\varOmega _\epsilon )\) to make sense of the following result. Note that in integrating by parts, we will also need to make use of the fact that, for \(i=s,\theta \),

$$\begin{aligned} \partial _i ({\text {d}}{\varvec{x}}) = -\frac{\rho \partial _i\widehat{\kappa }}{1-\rho \widehat{\kappa }} {\text {d}}{\varvec{x}}:= \mathcal {J}_i \, {\text {d}}{\varvec{x}}, \quad \left|\mathcal {J}_i \right| \le C; \quad i=s,\theta , \end{aligned}$$
(A.8)

where C depends on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\).

Then, using \(\partial _s(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}})\) in Definition 3, we have

$$\begin{aligned} 0&= \int _{\mathcal {O}} \bigg (2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}\big (\partial _s(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \big ) - p^{\mathrm{p}} \,\mathrm{{div}\,}(\partial _s(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}})) \bigg ) \, {\text {d}}{\varvec{x}}\\&= \int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \partial _s\mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}+ \int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}\\&\qquad - \int _{\mathcal {O}} p^{\mathrm{p}} \,\partial _s(\mathrm{{div}\,}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}})) \, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} p^{\mathrm{p}} \,[\mathrm{{div}\,},\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})- {\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}\\&= -\int _{\mathcal {O}} 2\partial _s\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}-\int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, \mathcal {J}_s \, {\text {d}}{\varvec{x}}\\&\qquad + \int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} p^{\mathrm{p}} \,[\mathrm{{div}\,},\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})- {\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}\\&= -\int _{\mathcal {O}} 2\mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}):\mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, \mathcal {J}_s \, {\text {d}}{\varvec{x}}\\&\qquad +\int _{\mathcal {O}} 2[\mathcal {E}(\cdot ),\partial _s]{\varvec{u}}^{\mathrm{p}}: \mathcal {E}(\partial _s(\psi {\varvec{u}}^{\mathrm{p}})- {\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}\\&\qquad + \int _{\mathcal {O}} 2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})-{\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}\\&\qquad - \int _{\mathcal {O}} p^{\mathrm{p}} \,[\mathrm{{div}\,},\partial _s](\partial _s(\psi {\varvec{u}}^{\mathrm{p}})- {\varvec{g}}-{\varvec{z}}) \, {\text {d}}{\varvec{x}}. \end{aligned}$$

Note that the first integral in the third line vanishes due to the definition of \({\varvec{z}}\). In this way, we can avoid having to deal with a \(\partial _s p^{\mathrm{p}}\) term in the resulting estimate.

Then, using Proposition 1, estimates (A.7) and (A.5), and Lemma 6, we have

$$\begin{aligned}&\left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}^2 \\&\quad \le C\left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \big ( \left\Vert \partial _s {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + \left\Vert \mathcal {E}({\varvec{z}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert \mathcal {E}({\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} \big ) \\&\qquad + C\left\Vert \mathcal {E}({\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \big (\left\Vert \mathcal {E}(\psi \partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} +\left\Vert \mathcal {E}({\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} +\left\Vert \mathcal {E}({\varvec{z}}) \right\Vert _{L^2(\mathcal {O})} \big ) \\&\qquad + 2\left\Vert [\mathcal {E}(\cdot ),\partial _s]{\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}\big ( \left\Vert \mathcal {E}(\psi \partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert \mathcal {E}({\varvec{z}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert \mathcal {E}({\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} \big ) \\&\qquad +2\left\Vert \mathcal {E}({\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \big ( \left\Vert [\mathcal {E}(\cdot ),\partial _s](\psi \partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert [\mathcal {E}(\cdot ),\partial _s]({\varvec{z}}) \right\Vert _{L^2(\mathcal {O})} \\&\qquad + \left\Vert [\mathcal {E}(\cdot ),\partial _s]({\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} \big ) \\&\qquad + \left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \big ( \left\Vert [\mathrm{{div}\,},\partial _s](\psi \partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert [\mathrm{{div}\,},\partial _s]({\varvec{z}}) \right\Vert _{L^2(\mathcal {O})} +\left\Vert [\mathrm{{div}\,},\partial _s]({\varvec{g}}) \right\Vert _{L^2(\mathcal {O})} \big ) \\&\quad \le C(\left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} +\left|{\varvec{\omega }} \right|)\big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}+\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} +\left|{\varvec{\omega }}^{\mathrm{p}} \right| \big ) \\&\quad \le \delta \left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}^2 + C(\delta ) \big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2+\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2 + \left|{\varvec{\omega }}^{\mathrm{p}} \right|^2\big ) \end{aligned}$$

for any \(0<\delta \in \mathbb {R}\), by Young’s inequality. Taking \(\delta =\frac{1}{2}\) and using Lemma 6, we obtain

$$\begin{aligned} \begin{aligned} \left\Vert \nabla (\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}&\le \left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \le C \big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}+\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + \left|{\varvec{\omega }}^{\mathrm{p}} \right| \big ) \\&\le C\left|\log \epsilon \right|^{1/2} \big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )}+\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ), \end{aligned} \end{aligned}$$
(A.9)

where we have used Corollary 1 to bound \(\left|{\varvec{\omega }}^{\mathrm{p}} \right|\). Here C depends only on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\).

We may estimate \(\partial _\theta {\varvec{u}}^{\mathrm{p}}\) in a similar way. In fact, the construction of the analogous test function is simpler since \((\partial _\theta {\varvec{u}}^{\mathrm{p}})\big |_{\Gamma _\epsilon } = \partial _\theta ({\varvec{v}}+{\varvec{\omega }}\times {\varvec{X}}(s))=0\) and thus we do not need to correct for a nonzero boundary value. Following the same steps used to estimate \(\partial _s{\varvec{u}}^{\mathrm{p}}\), we obtain

$$\begin{aligned} \left\Vert \nabla (\partial _\theta {\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \le C \big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )}+\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ), \end{aligned}$$
(A.10)

where C depends only on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\).

In addition to estimates (A.9) and (A.10), we need bounds for the tangential derivatives \(\partial _s p^{\mathrm{p}}\) and \(\partial _\theta p^{\mathrm{p}}\) of the pressure. We begin by estimating \(\partial _s p^{\mathrm{p}}\); the bound for \(\partial _\theta p^{\mathrm{p}}\) is similar. Since we already know that \(\partial _s p^{\mathrm{p}}\in L^2(\varOmega _\epsilon )\), we may consider \(\widetilde{{\varvec{z}}}\in D^{1,2}_0(\mathcal {O})\) satisfying

$$\begin{aligned} \begin{aligned} \mathrm{{div}\,}\widetilde{{\varvec{z}}}&= \psi \partial _s p^{\mathrm{p}} \quad \text {in }\mathcal {O}, \\ \left\Vert \nabla \widetilde{{\varvec{z}}} \right\Vert _{L^2(\mathcal {O})}&\le C\left\Vert \psi \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}, \end{aligned} \end{aligned}$$
(A.11)

where \(\psi \) is as in (A.4). Again, we know that such a \(\widetilde{{\varvec{z}}}\) exists due to [6], Section III.3 and [18], Appendix A.2.5.

Using \(\partial _s\widetilde{{\varvec{z}}}\) as a test function in Definition 3 (again, we can make sense of the following computation using finite differences, and thus only require \(\widetilde{{\varvec{z}}}\in D^{1,2}(\mathcal {O})\)), we have

$$\begin{aligned} 0&= \int _{\mathcal {O}} \bigg (2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\partial _s \widetilde{{\varvec{z}}}) - p^{\mathrm{p}}\, \mathrm{{div}\,}(\partial _s\widetilde{{\varvec{z}}})\bigg ) \, {\text {d}}{\varvec{x}}= \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \partial _s\mathcal {E}(\widetilde{{\varvec{z}}}) \, {\text {d}}{\varvec{x}}\\&\quad + \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} p^{\mathrm{p}} \,\partial _s\mathrm{{div}\,}\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} p^{\mathrm{p}} \, [\mathrm{{div}\,},\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}\\&= -\int _{\mathcal {O}}2\partial _s\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\widetilde{{\varvec{z}}}) \, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\widetilde{{\varvec{z}}}) \, \mathcal {J}_s \, {\text {d}}{\varvec{x}}+ \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}\\&\quad - \int _{\mathcal {O}} p^{\mathrm{p}} \, [\mathrm{{div}\,},\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}+ \int _{\mathcal {O}}(\partial _s p)\mathrm{{div}\,}\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}+ \int _{\mathcal {O}} p^{\mathrm{p}} \,\mathrm{{div}\,}\widetilde{{\varvec{z}}}\, \mathcal {J}_s \, {\text {d}}{\varvec{x}}\\&= \int _{\mathcal {O}}\psi (\partial _s p)^2 \, {\text {d}}{\varvec{x}}-\int _{\mathcal {O}}2\partial _s\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\widetilde{{\varvec{z}}}) \, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): \mathcal {E}(\widetilde{{\varvec{z}}}) \, \mathcal {J}_s \, {\text {d}}{\varvec{x}}\\&\quad + \int _{\mathcal {O}}2\mathcal {E}({\varvec{u}}^{\mathrm{p}}): [\mathcal {E}(\cdot ),\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}- \int _{\mathcal {O}} p^{\mathrm{p}} \, [\mathrm{{div}\,},\partial _s]\widetilde{{\varvec{z}}}\, {\text {d}}{\varvec{x}}+ \int _{\mathcal {O}} p^{\mathrm{p}} \,\mathrm{{div}\,}\widetilde{{\varvec{z}}}\, \mathcal {J}_s \, {\text {d}}{\varvec{x}}, \end{aligned}$$

where \(\mathcal {J}_s \, {\text {d}}{\varvec{x}}\) is as in (A.8) and we have used (A.11). Then, using that \(\psi ^2\le \psi \), we have

$$\begin{aligned} \left\Vert \psi \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2&\le 2\left\Vert \mathcal {E}(\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \left\Vert \mathcal {E}(\widetilde{{\varvec{z}}}) \right\Vert _{L^2(\mathcal {O})} + 2\left\Vert [\mathcal {E}(\cdot ),\partial _s]{\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \left\Vert \mathcal {E}(\widetilde{{\varvec{z}}}) \right\Vert _{L^2(\mathcal {O})} \\&\quad + C\left\Vert \mathcal {E}({\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} \left\Vert \mathcal {E}(\widetilde{{\varvec{z}}}) \right\Vert _{L^2(\mathcal {O})} + 2\left\Vert \mathcal {E}({\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}\left\Vert [\mathcal {E}(\cdot ),\partial _s]\widetilde{{\varvec{z}}} \right\Vert _{L^2(\mathcal {O})} \\&\quad +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \left\Vert [\mathrm{{div}\,},\partial _s]\widetilde{{\varvec{z}}} \right\Vert _{L^2(\mathcal {O})} + C\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \left\Vert \mathrm{{div}\,}\widetilde{{\varvec{z}}} \right\Vert _{L^2(\mathcal {O})}\\&\le C\big (\left\Vert \nabla (\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})} + \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \big ) \left\Vert \psi \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}\\&\le \delta \left\Vert \psi \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2 + C(\delta )\big (\left\Vert \nabla (\partial _s{\varvec{u}}^{\mathrm{p}}) \right\Vert _{L^2(\mathcal {O})}^2 + \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2 +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})}^2 \big ) \end{aligned}$$

for \(0<\delta \in \mathbb {R}\). Here, we have used (A.8), (A.11), Proposition 1, and Young’s inequality. Taking \(\delta =\frac{1}{2}\) and using (A.9), we obtain

$$\begin{aligned} \left\Vert \psi \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} \le C\left|\log \epsilon \right|^{1/2}\big ( \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ). \end{aligned}$$

Then, using (A.4), within the region

$$\begin{aligned} \mathcal {O}' = \bigg \{{\varvec{x}}\in \varOmega _{\epsilon } \; : \; {\varvec{x}}= {\varvec{X}}(s) + \rho {\varvec{e}}_{\rho }(s,\theta ), \quad \epsilon< \rho <\frac{r_{\max }}{4} \bigg \}, \end{aligned}$$

we have

$$\begin{aligned} \left\Vert \partial _s p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O}')} \le C\left|\log \epsilon \right|^{1/2}\big ( \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ) \end{aligned}$$
(A.12)

for C depending only on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\).

We can similarly use (A.10) to show

$$\begin{aligned} \left\Vert \partial _\theta p^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O}')} \le C\big ( \left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ). \end{aligned}$$
(A.13)

Now we can use the tangential bounds (A.9), (A.10), (A.12), and (A.13) to obtain an estimate for derivatives \(\nabla (\partial _\rho {\varvec{u}}^{\mathrm{p}})\) normal to \(\Gamma _\epsilon \). For this, we will use the full Stokes Eqs. (1.8), written with respect to the orthonormal frame \({\varvec{e}}_t\), \({\varvec{e}}_\rho \), \({\varvec{e}}_\theta \) in \(\mathcal {O}\) as

$$\begin{aligned} - \varDelta {\varvec{u}}^{\mathrm{p}} +\nabla p^{\mathrm{p}}&= -\varDelta {\varvec{u}}^{\mathrm{p}} + \frac{\partial p^{\mathrm{p}}}{\partial \rho }{\varvec{e}}_{\rho } + \frac{1}{\rho }\frac{\partial p^{\mathrm{p}}}{\partial \theta }{\varvec{e}}_{\theta } + \frac{1}{1-\rho \widehat{\kappa }}\bigg (\frac{\partial p^{\mathrm{p}}}{\partial s}-\kappa _3\frac{\partial p^{\mathrm{p}}}{\partial \theta }\bigg ){\varvec{e}}_t =0, \\ \mathrm{{div}\,}{\varvec{u}}^{\mathrm{p}}&= \frac{1}{1-\rho \widehat{\kappa }}\bigg (\frac{1}{\rho }\frac{\partial (\rho (1-\rho \widehat{\kappa }) u_{\rho })}{\partial \rho }+\frac{1}{\rho }\frac{\partial ((1-\rho \widehat{\kappa }) u_{\theta })}{\partial \theta } + \frac{\partial u_s}{\partial s} \bigg ) = 0. \end{aligned}$$

Here, \(\widehat{\kappa }\) is as in (A.3) and we recall the notation \(u_\rho = {\varvec{u}}^{\mathrm{p}}\cdot {\varvec{e}}_\rho \), \(u_\theta ={\varvec{u}}^{\mathrm{p}}\cdot {\varvec{e}}_\theta \), \(u_s={\varvec{u}}^{\mathrm{p}}\cdot {\varvec{e}}_t\).

From the divergence-free condition on \({\varvec{u}}^{\mathrm{p}}\), after multiplying through by \(\rho (1-\rho \widehat{\kappa })\) and differentiating once with respect to \(\rho \), we obtain

$$\begin{aligned} \left\Vert \frac{\partial ^2 u_{\rho }}{\partial ^2 \rho } \right\Vert _{L^2(\mathcal {O})}&\le C\bigg (\left\Vert \frac{1}{\rho } \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\mathcal {O})} + \bigg \Vert \frac{1}{\rho }\bigg \Vert _{L^{\infty }(\mathcal {O})}|\mathcal {O}|^{1/3}\big \Vert {\varvec{u}}^{\mathrm{p}} \big \Vert _{L^6(\mathcal {O})} \\&\quad + \bigg \Vert \frac{1}{\rho }\frac{\partial }{\partial \rho }\bigg (\frac{\partial u_{\theta }}{\partial \theta }\bigg )\bigg \Vert _{L^2(\mathcal {O})} +\bigg \Vert \frac{\partial }{\partial \rho }\bigg (\frac{\partial u_s}{\partial s}\bigg )\bigg \Vert _{L^2(\mathcal {O})} \bigg )\\&\le \frac{C}{\epsilon }\left|\log \epsilon \right|^{1/2}\big ( \Vert \nabla {\varvec{u}}^{\mathrm{p}}\Vert _{L^2(\varOmega _\epsilon )} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ), \end{aligned}$$

where we have used (A.9) and (A.10) along with the Sobolev inequality on \(\varOmega _\epsilon \).

Furthermore, using the \({\varvec{e}}_\rho \) component of \(-\varDelta {\varvec{u}}^{\mathrm{p}} +\nabla p=0\), we have

$$\begin{aligned} \frac{\partial p^{\mathrm{p}}}{\partial \rho }&= (\varDelta {\varvec{u}}^{\mathrm{p}}) \cdot {\varvec{e}}_{\rho } \\&= \frac{1}{\rho (1-\rho \widehat{\kappa })}\frac{\partial }{\partial \rho }\left( \rho (1-\rho \widehat{\kappa })\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \rho }\right) \cdot {\varvec{e}}_{\rho } +\frac{1}{\rho ^2(1-\rho \widehat{\kappa })}\frac{\partial }{\partial \theta }\bigg ((1-\rho \widehat{\kappa })\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta }\bigg )\cdot {\varvec{e}}_{\rho } \\&\quad +\frac{1}{1-\rho \widehat{\kappa }} \frac{\partial }{\partial s}\bigg ( \frac{1}{1-\rho \widehat{\kappa }}\bigg [ \frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial s}- \kappa _3\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta } \bigg ] \bigg )\cdot {\varvec{e}}_{\rho } \\&= \frac{1}{\rho (1-\rho \widehat{\kappa })}\frac{\partial }{\partial \rho }\left( \rho (1-\rho \widehat{\kappa })\frac{\partial u_{\rho }}{\partial \rho }\right) +\frac{1}{\rho ^2(1-\rho \widehat{\kappa })}\frac{\partial }{\partial \theta }\bigg ((1-\rho \widehat{\kappa })\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta }\bigg )\cdot {\varvec{e}}_{\rho } \\&\quad +\frac{1}{1-\rho \widehat{\kappa }} \frac{\partial }{\partial s}\bigg ( \frac{1}{1-\rho \widehat{\kappa }}\bigg [ \frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial s}- \kappa _3\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta } \bigg ] \bigg )\cdot {\varvec{e}}_{\rho }, \end{aligned}$$

since \({\varvec{e}}_{\rho }(s,\theta )\) does not vary with \(\rho \). Therefore, using (A.9), (A.10), (A.12), and (A.13), along with the bound on \(\frac{\partial ^2 u_{\rho }}{\partial \rho ^2}\), we have

$$\begin{aligned} \Vert \nabla p^{\mathrm{p}}\Vert _{L^2(\mathcal {O}')} \le \frac{C}{\epsilon }\left|\log \epsilon \right|^{1/2}\big ( \Vert \nabla {\varvec{u}}^{\mathrm{p}}\Vert _{L^2(\varOmega _\epsilon )} +\left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ). \end{aligned}$$

Finally, to estimate \(\frac{\partial ^2 u_j}{\partial \rho ^2}\), \(j=\theta ,s\), we again use that

$$\begin{aligned} \nabla p^{\mathrm{p}}\cdot {\varvec{e}}_j&= (\varDelta {\varvec{u}}^{\mathrm{p}})\cdot {\varvec{e}}_j(s,\theta ) \\&= \frac{1}{\rho (1-\rho \widehat{\kappa })}\frac{\partial }{\partial \rho }\bigg (\rho (1-\rho \widehat{\kappa })\frac{\partial u_j}{\partial \rho }\bigg ) +\frac{1}{\rho ^2(1-\rho \widehat{\kappa })}\frac{\partial }{\partial \theta }\bigg ((1-\rho \widehat{\kappa })\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta }\bigg )\cdot {\varvec{e}}_j \\&\quad +\frac{1}{1-\rho \widehat{\kappa }} \frac{\partial }{\partial s}\bigg ( \frac{1}{1-\rho \widehat{\kappa }}\bigg [ \frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial s}- \kappa _3\frac{\partial {\varvec{u}}^{\mathrm{p}}}{\partial \theta } \bigg ] \bigg )\cdot {\varvec{e}}_j , \quad j=\theta ,s, \end{aligned}$$

since each of \({\varvec{e}}_t(s)\), \({\varvec{e}}_\rho (s,\theta )\) and \({\varvec{e}}_\theta (s,\theta )\) are independent of \(\rho \). Then, we have

$$\begin{aligned} \bigg \Vert \frac{\partial ^2 u_j}{\partial \rho ^2}\bigg \Vert _{L^2(\mathcal {O}')}&\le C \bigg ( \bigg \Vert \frac{1}{\rho }\bigg \Vert _{L^{\infty }(\mathcal {O}')} \Vert \nabla {\varvec{u}}^{\mathrm{p}}\Vert _{L^2(\mathcal {O}')} + \bigg \Vert \frac{\partial ^2{\varvec{u}}^{\mathrm{p}}}{\partial s^2}\bigg \Vert _{L^2(\mathcal {O}')} \\&\quad + \bigg \Vert \frac{\partial ^2{\varvec{u}}^{\mathrm{p}}}{\partial s\partial \theta }\bigg \Vert _{L^2(\mathcal {O}')} +\bigg \Vert \frac{\partial ^2{\varvec{u}}^{\mathrm{p}}}{\partial \theta ^2}\bigg \Vert _{L^2(\mathcal {O}')}+\Vert \nabla p^{\mathrm{p}}\Vert _{L^2(\mathcal {O}')} \bigg ) \\&\le \frac{C}{\epsilon }\left|\log \epsilon \right|^{1/2} \big (\left\Vert \nabla {\varvec{u}}^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} + \left\Vert p^{\mathrm{p}} \right\Vert _{L^2(\varOmega _\epsilon )} \big ), \quad j=\theta , s, \end{aligned}$$

where C depends only on \(c_\Gamma \), \(\kappa _{\max }\), and \(\xi _{\max }\). Altogether, we obtain Lemma 9. \(\square \)

Remark 2

We note that the factor of \(\frac{1}{\epsilon }\) in Lemma 9 is necessary. As a heuristic, we consider an infinite straight cylinder of radius \(\epsilon \) and take \({\varvec{u}}= (\frac{1}{\rho }-\frac{1}{\epsilon }) {\varvec{e}}_{\theta }\), where \({\varvec{e}}_{\theta }\) is now the (constant) angular vector in straight cylindrical coordinates, and \(p\equiv \) constant. Ignoring decay conditions toward infinity along the cylinder, \(({\varvec{u}},p)\) solves the Stokes equations with \({\varvec{u}}=0\) on the cylinder surface. Then,

$$\begin{aligned} |\nabla ^2{\varvec{u}}| =\bigg | \frac{\partial ^2}{\partial \rho ^2} \frac{1}{\rho }\bigg | = \bigg |\frac{2}{\rho ^3}\bigg | = \frac{2}{\rho }\big | \nabla {\varvec{u}}\big |, \end{aligned}$$

and within the region \(\epsilon < \rho \le 2 \epsilon \), we have \(|\nabla ^2{\varvec{u}}| \ge \frac{1}{\epsilon }|\nabla {\varvec{u}}|\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mori, Y., Ohm, L. An error bound for the slender body approximation of a thin, rigid fiber sedimenting in Stokes flow. Res Math Sci 7, 8 (2020). https://doi.org/10.1007/s40687-020-00206-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40687-020-00206-7

Keywords

Mathematics Subject Classification

Navigation