Skip to main content
Log in

Influence of Aromatic-Group Structure on Cardiotropic Activity of Alkoxyphenyltriazaalkanes

  • SEARCH FOR NEW DRUGS
  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Previously, ALM-802 (N1-(2,3,4-trimethoxybenzyl)-N2-{2-[(2,3,4-trimethoxybenzyl)amino]ethyl}-1,2-ethanediamine trihydrochloride) and ALM-803 (N1-(3,4,5-trimethoxybenzyl)-N2-{2-[(3,4,5-trimethoxybenzyl) amino]ethyl}-1,2-ethanediamine trihydrochloride), which combined pharmacophores of the free fatty-acid oxidation inhibitors trimetazidine and ranolazine and the slow Ca2+-channel blocker verapamil, were synthesized by us. These compounds possessed anti-ischemic and antiarrhythmic activities. Herein, the new compound ALM-843 (N1-(3,4-dimethoxybenzyl)-N2-{2-[(3,4-dimethoxybenzyl)amino]ethyl}-1,2-ethanediamine trihydrochloride), which exhibited only antiarrhythmic activity, was prepared. The results led to the hypothesis that the antiarrhythmic activity of the linear alkoxyphenyltriazaalkanes was due to the presence of a 3,4-dimethoxyphenyl pharmacophore, which is also present in verapamil. This hypothesis was confirmed using molecular docking to show that the above alkoxyphenyltriazaalkanes bound similarly to the verapamil binding site of the voltage-gated Ca2+-channel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. G. V. Mokrov, A. M. Likhosherstov, V. V. Barchukov, et al., Khim.-farm. Zh., 53(6), 16 – 23 (2019); Pharm. Chem. J., 53(6), 500 – 506 (2019).

  2. G. V. Mokrov, A. M. Likhosherstov, V. V. Barchukov, et al., Farmakokinet. Farmakodin., 1, 6 – 11 (2019).

    Google Scholar 

  3. W. A. Catterall and T. M. Swanson, Mol. Pharmacol., 88(1), 141 – 150 (2015).

    Article  CAS  Google Scholar 

  4. H. Gulker, Eur. Heart J., 8 (Suppl. L), 141 – 146 (1987).

  5. S. Yamamoto, K. Matsui, M. Sasabe, and N. Ohashi, J. Cardiovasc. Pharmacol., 39(2), 234 – 241 (2002).

    Article  CAS  Google Scholar 

  6. A. N. Mironov, Handbook for Preclinical Drug Trials [in Russian], Part 1, Grif i K, Moscow (2013), pp. 235 – 416.

    Google Scholar 

  7. I. A. Ilyushkina, A. N. Berchatova, I. A. D’yachenko, et al., Biomeditsina, No. 2, 6 – 13 (2012).

    Google Scholar 

  8. G. M. Sastry, M. Adzhigirey, T. Day, et al., J. Comput.-Aided Mol. Des., 27(3), 221 – 234 (2013).

    Article  Google Scholar 

  9. R. A. Friesner, J. L. Banks, R. B. Murphy, et al., J. Med. Chem., 47, 1739 – 1749 (2004).

    Article  CAS  Google Scholar 

  10. L. Tang, T. M. El-Din, T. M. Swanson, et al., Nature, 537, 117 – 121 (2016).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. K. Mokrov.

Additional information

Translated from Khimiko-Farmatsevticheskii Zhurnal, Vol. 54, No. 4, pp. 3 – 9, April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mokrov, G.K., Likhosherstov, A.M., Pantileev, A.S. et al. Influence of Aromatic-Group Structure on Cardiotropic Activity of Alkoxyphenyltriazaalkanes. Pharm Chem J 54, 329–334 (2020). https://doi.org/10.1007/s11094-020-02200-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02200-3

Keywords

Navigation