Skip to main content
Log in

Adaptive response of the murine collecting duct to alkali loading

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Fine-tuning of salt and acid-base homeostasis is achieved in the renal collecting duct through the action of intercalated and principal cells. Their activity is tightly regulated adapting to changes in systemic acid-base, fluid, or electrolyte status. The relative number of acid or bicarbonate secretory intercalated cells changes in response to acid or alkali loading. Several factors that may induce collecting duct plasticity in response to acid loading have been identified including cell proliferation, Growth Differentiation Factor 15 (Gdf15), hensin (DMBT1), and SDF1 (or CXCL12). Also, the transcription factors Foxi1 and CP2L1, or the Notch2-Jag1 signaling pathway, may play a role. However, little is known about the mechanisms mediating the adaptive response of the collecting duct to alkali loading. Here, we examined in mouse kidney the response of these factors to alkali loading. Mice were left untreated or received NaHCO3 or NaCl over 7 days. Cell proliferation in vivo was monitored by Ki67 labeling or BrdU incorporation and expression of cell markers, and regulatory factors were examined. Foxi1 and GDF15 were upregulated and CP2L1 downregulated during alkali loading. Ki67 staining and BrdU incorporation were frequent in AQP2-positive cells in the NaCl and NaHCO3 groups, but no evidence was found for increased Ki67 or BrdU staining in bicarbonate-secretory cells consistent with a model that AQP2 positive precursor cells may differentiate into intercalated cells. Thus, alkali loading alters the cellular profile of the collecting duct, which may involve cell proliferation and changes in the network of molecules determining the plasticity of the collecting duct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Adler L, Efrati E, Zelikovic I (2008) Molecular mechanisms of epithelial cell-specific expression and regulation of the human anion exchanger (pendrin) gene. Am J Phys Cell Phys 294:C1261–C1276

    Article  CAS  Google Scholar 

  2. Al-Awqati Q (2003) Terminal differentation of intercalated cells: the role of Hensin. Annu Rev Physiol 65:567–583

    Article  CAS  Google Scholar 

  3. Al-Awqati Q (2011) Terminal differentiation in epithelia: the role of integrins in hensin polymerization. Annu Rev Physiol 73:401–412. https://doi.org/10.1146/annurev-physiol-012110-142253

    Article  CAS  PubMed  Google Scholar 

  4. Alper SL, Natale J, Gluck S, Lodish HF, Brown D (1989) Subtypes of intercalated cells in rat kidney collecting duct defined by antibodies against erythroid band 3 and renal vacuolar H+-ATPase. Proc Natl Acad Sci U S A 86:5429–5433

    Article  CAS  Google Scholar 

  5. Aue A, Hinze C, Walentin K, Ruffert J, Yurtdas Y, Werth M, Chen W, Rabien A, Kilic E, Schulzke JD, Schumann M, Schmidt-Ott KM (2015) A grainyhead-like 2/Ovo-like 2 pathway regulates renal epithelial barrier function and lumen expansion. J Am Soc Nephrol 26:2704–2715. https://doi.org/10.1681/ASN.2014080759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Azroyan A, Laghmani K, Crambert G, Mordasini D, Doucet A, Edwards A (2011) Regulation of pendrin by pH: dependence on glycosylation. Biochem J 434:61–72. https://doi.org/10.1042/BJ20101411

    Article  CAS  PubMed  Google Scholar 

  7. Azroyan A, Morla L, Crambert G, Laghmani K, Ramakrishnan S, Edwards A, Doucet A (2012) Regulation of pendrin by cAMP: possible involvement in beta-adrenergic-dependent NaCl retention. Am J Physiol Ren Physiol 302:F1180–F1187. https://doi.org/10.1152/ajprenal.00403.2011

    Article  CAS  Google Scholar 

  8. Blomqvist SR, Vidarsson H, Fitzgerald S, Johansson BR, Ollerstam A, Brown R, Persson AE, Bergstrom GG, Enerback S (2004) Distal renal tubular acidosis in mice that lack the forkhead transcription factor Foxi1. J Clin Invest 113:1560–1570

    Article  CAS  Google Scholar 

  9. Blomqvist SR, Vidarsson H, Soder O, Enerback S (2006) Epididymal expression of the forkhead transcription factor Foxi1 is required for male fertility. EMBO J 25:4131–4141

    Article  CAS  Google Scholar 

  10. Chen L, Lee JW, Chou CL, Nair AV, Battistone MA, Paunescu TG, Merkulova M, Breton S, Verlander JW, Wall SM, Brown D, Burg MB, Knepper MA (2017) Transcriptomes of major renal collecting duct cell types in mouse identified by single-cell RNA-seq. Proc Natl Acad Sci U S A 114:E9989–E9998. https://doi.org/10.1073/pnas.1710964114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Christensen EI, Wagner CA, Kaissling B (2012) Uriniferous tubule: structural and functional organization. Compr Physiol 2:805–861. https://doi.org/10.1002/cphy.c100073

    Article  PubMed  Google Scholar 

  12. Duong Van Huyen JP, Cheval L, Bloch-Faure M, Belair MF, Heudes D, Bruneval P, Doucet A (2008) GDF15 triggers homeostatic proliferation of acid-secreting collecting duct cells. J Am Soc Nephrol 19:1965–1974. https://doi.org/10.1681/ASN.2007070781

    Article  CAS  PubMed  Google Scholar 

  13. El-Dahr SS, Aboudehen K, Saifudeen Z (2008) Transcriptional control of terminal nephron differentiation. Am J Physiol Ren Physiol 294:F1273–F1278. https://doi.org/10.1152/ajprenal.00562.2007

    Article  CAS  Google Scholar 

  14. Enerback S, Nilsson D, Edwards N, Heglind M, Alkanderi S, Ashton E, Deeb A, Kokash FEB, Bakhsh ARA, Van't Hoff W, Walsh SB, D'Arco F, Daryadel A, Bourgeois S, Wagner CA, Kleta R, Bockenhauer D, Sayer JA (2017) Acidosis and deafness in patients with recessive mutations in FOXI1. J Am Soc Nephrol:ASN.2017080840. https://doi.org/10.1681/ASN.2017080840

  15. Galla JH, Gifford JD, Luke RG, Rome L (1991) Adaptations to chloride-depletion alkalosis. Am J Phys 261:R771–R781

    CAS  Google Scholar 

  16. Gao X, Eladari D, Leviel F, Tew BY, Miro-Julia C, Cheema F, Miller L, Nelson R, Paunescu TG, McKee M, Brown D, Al-Awqati Q (2010) Deletion of hensin/DMBT1 blocks conversion of {beta}- to {alpha}-intercalated cells and induces distal renal tubular acidosis. Proc Natl Acad Sci U S A 107:21872–21877. https://doi.org/10.1073/pnas.1010364107

    Article  PubMed  PubMed Central  Google Scholar 

  17. Gueutin V, Vallet M, Jayat M, Peti-Peterdi J, Corniere N, Leviel F, Sohet F, Wagner CA, Eladari D, Chambrey R (2013) Renal beta-intercalated cells maintain body fluid and electrolyte balance. J Clin Invest 123:4219–4231. https://doi.org/10.1172/JCI63492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Guo Q, Wang Y, Tripathi P, Manda KR, Mukherjee M, Chaklader M, Austin PF, Surendran K, Chen F (2015) Adam10 mediates the choice between principal cells and intercalated cells in the kidney. J Am Soc Nephrol 26:149–159. https://doi.org/10.1681/ASN.2013070764

    Article  CAS  PubMed  Google Scholar 

  19. Hadchouel J, Busst C, Procino G, Valenti G, Chambrey R, Eladari D (2011) Regulation of extracellular fluid volume and blood pressure by pendrin. Cell Physiol Biochem 28:505–512. https://doi.org/10.1159/000335116

    Article  CAS  PubMed  Google Scholar 

  20. Hafner P, Grimaldi R, Capuano P, Capasso G, Wagner CA (2008) Pendrin in the mouse kidney is primarily regulated by Cl- excretion but also by systemic metabolic acidosis. Am J Phys Cell Phys 295:C1658–C1667

    Article  CAS  Google Scholar 

  21. Hamm LL, Alpern RJ, Preisig PA (2008) Cellular mechanisms of renal tubular acidification. In: Alpern RJ, Hebert SC (eds) Seldin and Giebisch’s the kidney. Physiology and Pathophysiology. 4th edn. Academic Press, pp 1539-1585

  22. Hulander M, Kiernan AE, Blomqvist SR, Carlsson P, Samuelsson EJ, Johansson BR, Steel KP, Enerback S (2003) Lack of pendrin expression leads to deafness and expansion of the endolymphatic compartment in inner ears of Foxi1 null mutant mice. Development 130:2013–2025

    Article  CAS  Google Scholar 

  23. Iervolino A, Prosperi F, De La Motte LR, Petrillo F, Spagnuolo M, D'Acierno M, Siccardi S, Perna AF, Christensen BM, Frische S, Capasso G, Trepiccione F (2020) Potassium depletion induces cellular conversion in the outer medullary collecting duct altering Notch signaling pathway. Sci Rep 10:5708. https://doi.org/10.1038/s41598-020-61882-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jacques T, Picard N, Miller RL, Riemondy KA, Houillier P, Sohet F, Ramakrishnan SK, Busst CJ, Jayat M, Corniere N, Hassan H, Aronson PS, Hennings JC, Hubner CA, Nelson RD, Chambrey R, Eladari D (2013) Overexpression of pendrin in intercalated cells produces chloride-sensitive hypertension. J Am Soc Nephrol 24:1104–1113. https://doi.org/10.1681/ASN.2012080787

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Jeong HW, Jeon US, Koo BK, Kim WY, Im SK, Shin J, Cho Y, Kim J, Kong YY (2009) Inactivation of Notch signaling in the renal collecting duct causes nephrogenic diabetes insipidus in mice. J Clin Invest 119:3290–3300. https://doi.org/10.1172/JCI38416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kim J, Kim YH, Cha JH, Tisher CC, Madsen KM (1999) Intercalated cell subtypes in connecting tubule and cortical collecting duct of rat and mouse. J Am Soc Nephrol 10:1–12

    CAS  PubMed  Google Scholar 

  27. Leviel F, Hubner CA, Houillier P, Morla L, El Moghrabi S, Brideau G, Hassan H, Parker MD, Kurth I, Kougioumtzes A, Sinning A, Pech V, Riemondy KA, Miller RL, Hummler E, Shull GE, Aronson PS, Doucet A, Wall SM, Chambrey R, Eladari D (2010) The Na+-dependent chloride-bicarbonate exchanger SLC4A8 mediates an electroneutral Na+ reabsorption process in the renal cortical collecting ducts of mice. J Clin Invest 120:1627–1635. https://doi.org/10.1172/JCI40145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Loffing J, Kaissling B (2003) Sodium and calcium transport pathways along the mammalian distal nephron: from rabbit to human. Am J Physiol Ren Physiol 284:F628–F643

    Article  CAS  Google Scholar 

  29. McCright B, Lozier J, Gridley T (2002) A mouse model of Alagille syndrome: Notch2 as a genetic modifier of Jag1 haploinsufficiency. Development 129:1075–1082

  30. Mohebbi N, Perna A, van der Wijst J, Becker HM, Capasso G, Wagner CA (2013) Regulation of two renal chloride transporters, AE1 and pendrin, by electrolytes and aldosterone. PLoS One 8:e55286. https://doi.org/10.1371/journal.pone.0055286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Nielsen S, DiGiovanni SR, Christensen EI, Knepper MA, Harris HW (1993) Cellular and subcellular immunolocalization of vasopressin-regulated water channel in rat kidney. Proc Natl Acad Sci U S A 90:11663–11667

    Article  CAS  Google Scholar 

  32. Nowik M, Kampik NB, Mihailova M, Eladari D, Wagner CA (2010) Induction of metabolic acidosis with ammonium chloride (NH4Cl) in mice and rats--species differences and technical considerations. Cell Physiol Biochem 26:1059–1072. https://doi.org/10.1159/000323984

    Article  CAS  PubMed  Google Scholar 

  33. Park J, Shrestha R, Qiu C, Kondo A, Huang S, Werth M, Li M, Barasch J, Susztak K (2018) Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:758–763. https://doi.org/10.1126/science.aar2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel N, Sharpe PT, Miletich I (2011) Coordination of epithelial branching and salivary gland lumen formation by Wnt and FGF signals. Dev Biol 358:156–167. https://doi.org/10.1016/j.ydbio.2011.07.023

    Article  CAS  PubMed  Google Scholar 

  35. Petrenko AG, Zozulya SA, Deyev IE, Eladari D (2013) Insulin receptor-related receptor as an extracellular pH sensor involved in the regulation of acid-base balance. Biochim Biophys Acta 1834:2170–2175. https://doi.org/10.1016/j.bbapap.2012.11.011

    Article  CAS  PubMed  Google Scholar 

  36. Purkerson JM, Tsuruoka S, Suter DZ, Nakamori A, Schwartz GJ (2010) Adaptation to metabolic acidosis and its recovery are associated with changes in anion exchanger distribution and expression in the cortical collecting duct. Kidney Int 78:993–1005. https://doi.org/10.1038/ki.2010.195

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Quigley IK, Stubbs JL, Kintner C (2011) Specification of ion transport cells in the Xenopus larval skin. Development 138:705–714. https://doi.org/10.1242/dev.055699

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Ransick A, Lindstrom NO, Liu J, Zhu Q, Guo JJ, Alvarado GF, Kim AD, Black HG, Kim J, McMahon AP (2019) Single-cell profiling reveals sex, lineage, and regional diversity in the mouse kidney. Dev Cell 51:399–413 e397. doi:https://doi.org/10.1016/j.devcel.2019.10.005, e399

  39. Roy A, Al-bataineh MM, Pastor-Soler NM (2015) Collecting duct intercalated cell function and regulation. Clin J Am Soc Nephrol 10:305–324. https://doi.org/10.2215/CJN.08880914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Royaux IE, Wall, S M, Karniski, L P, Everett, L A, Suzuki, K, Knepper, M A, Green, E D (2001) Pendrin, encoded by the Pendred syndrome gene, resides in the apical region of renal intercalated cells and mediates bicarbonate secretion. Proc Natl Acad Sci U S A 98:4221–4226

  41. Rozenfeld J, Efrati E, Adler L, Tal O, Carrithers SL, Alper SL, Zelikovic I (2011) Transcriptional regulation of the pendrin gene. Cell Physiol Biochem 28:385–396. https://doi.org/10.1159/000335100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Saritas T, Puelles VG, Su XT, McCormick JA, Welling PA, Ellison DH (2018) Optical clearing in the kidney reveals potassium-mediated tubule remodeling. Cell Rep 25(2668–2675):e2663. https://doi.org/10.1016/j.celrep.2018.11.021

    Article  CAS  Google Scholar 

  43. Schwartz GJ, Gao X, Tsuruoka S, Purkerson JM, Peng H, D'Agati V, Picard N, Eladari D, Al-Awqati Q (2015) SDF1 induction by acidosis from principal cells regulates intercalated cell subtype distribution. J Clin Invest 125:4365–4374. https://doi.org/10.1172/JCI80225

    Article  PubMed  PubMed Central  Google Scholar 

  44. Sinning A, Radionov N, Trepiccione F, Lopez-Cayuqueo KI, Jayat M, Baron S, Corniere N, Alexander RT, Hadchouel J, Eladari D, Hubner CA, Chambrey R (2016) Double knockout of the Na+-driven Cl-/HCO3- exchanger and Na+/Cl- Cotransporter induces hypokalemia and volume depletion. J Am Soc Nephrol https://doi.org/10.1681/ASN.2015070734, 28, 130, 139

  45. Stehberger PA, Shmukler BE, Stuart-Tilley AK, Peters LL, Alper SL, Wagner CA (2007) Distal renal tubular acidosis in mice lacking the AE1 (band3) Cl/HCO3 exchanger (slc4a1). J Am Soc Nephrol 18:1408–1418

    Article  CAS  Google Scholar 

  46. Surendran K, Boyle S, Barak H, Kim M, Stomberski C, McCright B, Kopan R (2010) The contribution of Notch1 to nephron segmentation in the developing kidney is revealed in a sensitized Notch2 background and can be augmented by reducing Mint dosage. Dev Biol 337:386–395. https://doi.org/10.1016/j.ydbio.2009.11.017

    Article  CAS  PubMed  Google Scholar 

  47. Teng-umnuay P, Verlander JW, Yuan W, Tisher CC, Madsen KM (1996) Identification of distinct subpopulations of intercalated cells in the mouse collecting duct. J Am Soc Nephrol 7:260–274

    CAS  PubMed  Google Scholar 

  48. Trepiccione F, Capasso G, Nielsen S, Christensen BM (2013) Evaluation of cellular plasticity in the collecting duct during recovery from lithium-induced nephrogenic diabetes insipidus. Am J Physiol Ren Physiol 305:F919–F929. https://doi.org/10.1152/ajprenal.00152.2012

    Article  CAS  Google Scholar 

  49. Trepiccione F, Soukaseum C, Iervolino A, Petrillo F, Zacchia M, Schutz G, Eladari D, Capasso G, Hadchouel J (2016) A fate-mapping approach reveals the composite origin of the connecting tubule and alerts on “single-cell”-specific KO model of the distal nephron. Am J Physiol Ren Physiol 311:F901–F906. https://doi.org/10.1152/ajprenal.00286.2016

    Article  CAS  Google Scholar 

  50. Verlander JW, Kim YH, Shin W, Pham TD, Hassell KA, Beierwaltes WH, Green ED, Everett L, Matthews SW, Wall SM (2006) Dietary Cl(-) restriction upregulates pendrin expression within the apical plasma membrane of type B intercalated cells. Am J Physiol Ren Physiol 291:F833–F839

    Article  CAS  Google Scholar 

  51. Verlander JW, Madsen KM, Galla JH, Luke RG, Tisher CC (1992) Response of intercalated cells to chloride depletion metabolic alkalosis. Am J Phys 262:F309–F319

    Article  CAS  Google Scholar 

  52. Verlander JW, Miller RT, Frank AE, Royaux IE, Kim YH, Weiner ID (2003) Localization of the ammonium transporter proteins RhBG and RhCG in mouse kidney. Am J Physiol Ren Physiol 284:F323–F337

    Article  CAS  Google Scholar 

  53. Vidarsson H, Westergren R, Heglind M, Blomqvist SR, Breton S, Enerback S (2009) The forkhead transcription factor Foxi1 is a master regulator of vacuolar H-ATPase proton pump subunits in the inner ear, kidney and epididymis. PLoS One 4:e4471. https://doi.org/10.1371/journal.pone.0004471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Wagner CA, Devuyst O, Bourgeois S, Mohebbi N (2009) Regulated acid-base transport in the collecting duct. Pflugers Arch 458:137–156. https://doi.org/10.1007/s00424-009-0657-z

    Article  CAS  PubMed  Google Scholar 

  55. Wagner CA, Finberg KE, Stehberger PA, Lifton RP, Giebisch GH, Aronson PS, Geibel JP (2002) Regulation of the expression of the Cl/anion exchanger pendrin in mouse kidney by acid-base status. Kidney Int 62:2109–2117

    Article  CAS  Google Scholar 

  56. Wagner CA, Loffing-Cueni D, Yan Q, Schulz N, Fakitsas P, Carrel M, Wang T, Verrey F, Geibel JP, Giebisch G, Hebert SC, Loffing J (2008) Mouse model of type II Bartter’s syndrome. II. Altered expression of renal sodium- and water-transporting proteins. Am J Physiol Ren Physiol 294:F1373–F1380. https://doi.org/10.1152/ajprenal.00613.2007

  57. Wagner CA, Mohebbi N, Capasso G, Geibel JP (2011) The anion exchanger pendrin (SLC26A4) and renal acid-base homeostasis. Cell Physiol Biochem 28:497–504. https://doi.org/10.1159/000335111

    Article  CAS  PubMed  Google Scholar 

  58. Wall SM (2016) The role of pendrin in blood pressure regulation. Am J Physiol Ren Physiol 310:F193–F203. https://doi.org/10.1152/ajprenal.00400.2015

    Article  CAS  Google Scholar 

  59. Wall SM, Hassell KA, Royaux IE, Green ED, Chang JY, Shipley GL, Verlander JW (2002) Localization of pendrin in mouse kidney. Am J Physiol Ren Physiol 284:F229–F241

    Article  Google Scholar 

  60. Wall SM, Kim YH, Stanley L, Glapion DM, Everett LA, Green ED, Verlander JW (2004) NaCl restriction upregulates renal Slc26a4 through subcellular redistribution: role in Cl- conservation. Hypertension 44:982–987

  61. Wall SM, Lazo-Fernandez Y (2015) The role of pendrin in renal physiology. Annu Rev Physiol 77:363–378. https://doi.org/10.1146/annurev-physiol-021014-071854

    Article  CAS  PubMed  Google Scholar 

  62. Wehrli P, Loffing-Cueni D, Kaissling B, Loffing J (2007) Replication of segment-specific and intercalated cells in the mouse renal collecting system. Histochem Cell Biol 127:389–398

    Article  CAS  Google Scholar 

  63. Welsh-Bacic D, Nowik M, Kaissling B, Wagner CA (2011) Proliferation of acid-secretory cells in the kidney during adaptive remodelling of the collecting duct. PLoS One 6:e25240. https://doi.org/10.1371/journal.pone.0025240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wen D, Ni L, You L, Zhang L, Gu Y, Hao CM, Chen J (2012) Upregulation of nestin in proximal tubules may participate in cell migration during renal repair. Am J Physiol Ren Physiol 303:F1534–F1544. https://doi.org/10.1152/ajprenal.00083.2012

    Article  CAS  Google Scholar 

  65. Werth M, Schmidt-Ott KM, Leete T, Qiu A, Hinze C, Viltard M, Paragas N, Shawber CJ, Yu W, Lee P, Chen X, Sarkar A, Mu W, Rittenberg A, Lin CS, Kitajewski J, Al-Awqati Q, Barasch J (2017) Transcription factor TFCP2L1 patterns cells in the mouse kidney collecting ducts. Elife 6. https://doi.org/10.7554/eLife.24265

  66. Werth M, Walentin K, Aue A, Schonheit J, Wuebken A, Pode-Shakked N, Vilianovitch L, Erdmann B, Dekel B, Bader M, Barasch J, Rosenbauer F, Luft FC, Schmidt-Ott KM (2010) The transcription factor grainyhead-like 2 regulates the molecular composition of the epithelial apical junctional complex. Development 137:3835–3845. https://doi.org/10.1242/dev.055483

    Article  CAS  PubMed  Google Scholar 

  67. Wu H, Chen L, Zhou Q, Zhang X, Berger S, Bi J, Lewis DE, Xia Y, Zhang W (2013) Aqp2-expressing cells give rise to renal intercalated cells. J Am Soc Nephrol 24:243–252. https://doi.org/10.1681/ASN.2012080866

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Yamaguchi Y, Yonemura S, Takada S (2006) Grainyhead-related transcription factor is required for duct maturation in the salivary gland and the kidney of the mouse. Development 133:4737–4748. https://doi.org/10.1242/dev.02658

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The use of the ZIRP Rodent facility is gratefully acknowledged.

Funding

The study was supported by grants from the Swiss National Science Foundation (31003A, 155959, and 176125) to C. A. Wagner.

Author information

Authors and Affiliations

Authors

Contributions

A.G., N.M., A.D., C.B., and C.A.W. performed experiments and analyzed data. A.G., N.M., and C.A.W. wrote the manuscript. All authors read and approved the manuscript.

Corresponding author

Correspondence to Carsten A. Wagner.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Genini, A., Mohebbi, N., Daryadel, A. et al. Adaptive response of the murine collecting duct to alkali loading. Pflugers Arch - Eur J Physiol 472, 1079–1092 (2020). https://doi.org/10.1007/s00424-020-02423-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-020-02423-z

Keywords

Navigation