Skip to main content
Log in

Experimental Investigation into the Mechanical Behavior of Textile Composites with Various Fiber Reinforcement Architectures

  • Published:
Mechanics of Composite Materials Aims and scope

The role of fiber reinforcement architecture in adjusting the mechanical properties of glass-fiber-reinforced epoxy composite materials is studied. Fibrous E-glass unidirectional (UD) and 3-dimensional (3D) samples with an identical fiber volume fraction were prepared. The UD composites displayed excellent properties along the fiber direction, but the 3D ones showed excellent properties in all three directions. The high delamination and impact resistances were additional advantages of 3D-reinforced composites to choose them as reliable materials for structural applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. P. K. Mallick, Fiber-Reinforced Composites: Materials, Manufacturing, and Design, CRC press (2007).

  2. A Genovese, M. Russo, and S. Strano, “Mechanical characterization and modeling of an innovative composite material for railway applications,” Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 231, No. 1, 2, 122-130 (2017)

  3. N. Kumar and D. Das, “Fibrous biocomposites from nettle (Girardiniadiversifolia) and poly (lactic acid) fibers for automotive dashboard panel application,” Compos. Part B, Eng., 130, 54-63 (2017).

  4. G. Belingardi, A. T. Beyene, E.G. Koricho, and B. Martorana, “Alternative lightweight materials and component manufacturing technologies for vehicle frontal bumper beam,” Compos. Struct. 120, 483-495 (2015).

    Article  Google Scholar 

  5. V. Khatkar and B. K. Behera, “Experimental investigation of composite leaf spring reinforced with various fiber architecture,” Adv. Compos. Mater., 1-17 (2019)

  6. C. Wang, A. Roy, Z. Chen, and V. V. Silberschmidt, “Braided textile composites for sports protection: Energy absorption and delamination in impact modelling,” Mater. Des., 136, 258-269 (2017).

    Article  Google Scholar 

  7. H. Ullah, A. R. Harland, and V. V. Silberschmidt, “Dynamic bending behaviour of woven composites for sports products: Experiments and damage analysis,” Mater. Des., 88, 149-156 (2015).

    Article  CAS  Google Scholar 

  8. R. N. Manjunath, B. K. Behera, “Modelling the geometry of the unit cell of woven fabrics with integrated stiffener sections,” J. Text. I. 108(11), 2006-2012 (2017)

    Article  Google Scholar 

  9. R. N. Manjunath, V. Khatkar, and B. K. Behera, “Influence of augmented tuning of core architecture in 3D woven sandwich structures on flexural and compression properties of their composites,” Adv. Compos. Mater., 1-17 (2019).

  10. D. G. dos Santos, R. J. C. Carbas, E. A.S. Marques, and L. F. M. da Silva, “Reinforcement of CFRP joints with fiber metal laminates and additional adhesive layers,” Compos., Part B, Eng. 165, 386-396 (2019).

  11. B. K. Behera and B. P. Dash, “Mechanical behavior of 3D woven composites,” Mater. Des., 67, 261-71 (2015).

    Article  CAS  Google Scholar 

  12. P. Priyanka, A. Dixit, and H. S. Mali, “High-strength hybrid textile composites with carbon, kevlar, and e-glass fibers for impact-resistant structures. A Review,” Mech. Compos. Mater., 53, No. 5, 685-704 (2017).

    Article  CAS  Google Scholar 

  13. D. S. Lobanov and S. V. Slovikov, “Mechanical properties of a unidirectional basalt-fiber-reinforced plastic under a loading simulating operation conditions,” Mech. Compos. Mater., 52, No. 6, 767-772 (2017).

    Article  CAS  Google Scholar 

  14. D. S. Lobanov, and S. V. Slovikov, “Mechanical behavior of a unidirectional basalt-fiber-reinforced plastic under thermomechanical loadings,” Mech. Compos. Mater., 54, No. 3, 351-358 (2018).

    Article  CAS  Google Scholar 

  15. R. N. Manjunath and B. K. Behera, “Modelling the geometry of the unit cell of woven fabrics with integrated stiffener sections,” J. Tex. Inst., 108, No. 11, 2006-12 (2017).

    Article  Google Scholar 

  16. R. N. Manjunath and B. K. Behera, Emerging Trends in Three-Dimensional Woven Preforms for Composite Reinforcements, In: Shahid-Ul Islam, Butola B.S. (eds.) Advanced Textile Engineering Materials, Wiley USA, 463-97 Wiley, USA(2018).

  17. H. Gu and Z. Zhili, “Tensile behavior of 3D woven composites by using different fabric structures,”Mater. Des., 23, No. 7, 671-674 (2002).

  18. B. K. Behera and B. P. Dash, “A study on structure property relationship of 3D woven composites,” Mater Today Proc., 2, No. 4, 5, 2991-3007 (2015).

  19. X. Shang, E. A. S. Marques, J. J. M. Machado,R. J. C. Carbas, D. Jiang, and L. F. Mda Silva, “A strategy to reduce delamination of adhesive joints with composite substrates,” Proceedings of the Institution of Mechanical Engineers, Part L: J. Mater. Des. Appl., 233, No. 3, 521-530 (2019)

  20. B. K. Behera and R. Mishra R, “3-Dimensional weaving,” Indian J Fiber and Textile Research, 33 (2008).

  21. R. Mishra, J. Militky, B. K. Behera, and V. Banthia, “Modelling and simulation of 3D orthogonal fabrics for composite applications,” J. Text. Inst., 103, No. 11, 1255-61 (2012).

    Article  Google Scholar 

  22. P. Turner, T. Liu, and X. Zeng, “Collapse of 3D orthogonal woven carbon fiber composites under in-plane tension/compression and out-of-plane bending,” Compos. Struct., 142, 286-297 (2016).

    Article  Google Scholar 

  23. V. A. Guénon, T. W. Chou, and J. W. Gillespie, “Toughness properties of a three-dimensional carbon-epoxy composite,” J. Mater. Sci., 24, No. 11, 4168-75 (1989).

    Article  Google Scholar 

  24. Y. Tanzawa and Y. Tanzawa, “Experimental study of interlaminar delamination toughness of 3-D orthogonal interlocked fabric composite,” In38th Structures, Structural Dynamics, and Mater. Conference, 1294 (1997).

  25. Y. Tanzawa, N. Watanabe, and T. Ishikawa, “Interlaminar fracture toughness of 3-D orthogonal interlocked fabric composites,” Compos. Sci. and Technol., 59, No. 8, 1261-70 (1999).

    Article  Google Scholar 

  26. B. K. Behera and B. P. Dash, “An experimental investigation into the mechanical behavior of 3D woven fabrics for structural composites,” Fibers Polym., 15, No. 9, 1950-55 (2014)

    Article  CAS  Google Scholar 

  27. D. Zhang, Y. Sun, L. Chen and N. Pan, “A comparative study on low-velocity impact response of fabric composite laminates,” Mater. Des., 50, 750-6 (2013).

    Article  CAS  Google Scholar 

  28. K. C. Warren, R. A. Lopez-Anido, and J. Goering, “Experimental investigation of three-dimensional woven composites,” Compos. Part A, Appl. Sci. Manuf., 73, 242-259 (2015).

  29. S. Dhiman, P. Potluri, and C. Silva, “Influence of binder configuration on 3D woven composites,” Compos. Struct., 134, 862-868 (2015)

    Article  Google Scholar 

  30. M. N. Saleh, A. Yudhanto, P. Potluri, and G Lubineau, “Characterizing the loading direction sensitivity of 3D woven composites: Effect of z-binder architecture,” Compos. Part A, Appl. Sci. Manuf., 90, 577-588 (2016).

  31. S. Topal, L. Baiocchi, A. D. Crocombe, and S. L. Ogin, “Late-stage fatigue damage in a 3D orthogonal non-crimp woven composite: An experimental and numerical study,” Compos. Part A, Appl. Sci. Manuf., 79, 155-163 (2015).

  32. Y. Q. Ding, Y .Yan, R. McIlhagger, and D. Brawn, “Comparison of the fatigue behaviour of 2-D and 3-D woven fabric reinforced composites,” J. Mater. Process Tech., 55, No. 3, 4, 171-177 (1995).

  33. V. Carvelli, G. Gramellini, S. V. Lomov, A. E. Bogdanovich, D. D. Mungalov, and I. Verpoest, “Fatigue behavior of non-crimp 3D orthogonal weave and multi-layer plain weave E-glass reinforced composites,” Compos. Sci. Technol., 70, No. 14, 2068-2076 (2010).

    Article  CAS  Google Scholar 

  34. ASTM D. 3039/D 3039M-08. Standard Test method for Tensile Properties of Polymer Matrix Composite Materials,” ASTM International, 100, 19428-2959 (2008).

  35. ASTM, D. 3410/3410M-16: Standard Test Method for Compression Properties of Polymer Matrix Composite Materials with Unsupported Gage Section Shear Loading. ASTM International (2016).

  36. ASTM D. 7264. Standard test method for flexural properties of polymer matrix composite materials. ASTM International (2015).

  37. ASTM D. 7136/D 7136M-15. Standard Test Method for Measuring the Damage Resistance of a Fiber-Reinforced Polymer Matrix Composite to a Drop-Weight Impact Event. ASTM International (2015).

Download references

Acknowledgement

The Authors are thankful to the Ministry of Textile for sponsoring the Focus Incubation center for 3D weaving and manufacture of structural composites.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Khatkar.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 3, pp. 545-560, May-June, 2020

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khatkar, V., Vijayalakshmi, A.G.S., Manjunath, R.N. et al. Experimental Investigation into the Mechanical Behavior of Textile Composites with Various Fiber Reinforcement Architectures. Mech Compos Mater 56, 367–378 (2020). https://doi.org/10.1007/s11029-020-09888-0

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09888-0

Keywords

Navigation