Skip to main content
Log in

Local Delaminations Induced by Interaction Between Intralaminar Cracking and Specimen Edge in Quasi-Isotropic CF/EP NCF Composites in Fatigue Loadings

  • Published:
Mechanics of Composite Materials Aims and scope

Experimental results are presented on the onset and propagation of local delaminations caused by the interaction between specimen edges and intralaminar cracks in fiber bundles of 90° layers in quasi-isotropic [–45/90/45/0]s CF/EP noncrimp fabric (NCF) laminates subjected to tension-tension fatigue loadings. It is confirmed that the first damage mode is intralaminar cracking in 90° layers, which consists of intrabundle cracks and cracks in the matrix between bundles (often beginning from stitches). This damage mode triggers cracking in off-axis layers and local delaminations in positions where the 90° layer crack meets an adjacent layer. The process of local delamination is significantly enhanced at specimen edges, where the out-of-plane edge stresses contribute to the local delamination. During cyclic loadings, delaminations grow and coalesce along the edge and propagate towards the specimen center. These processes are quantified experimentally at different levels of cyclic load. In a low-stress fatigue, a very high number of cycles is required to detect small edge delaminations, and they stay at the edge. In high-stress cyclic tests, delaminations grow faster inside the composite: about 20% of the interface in the central zone can be delaminated. It is found that the reduction in the axial modulus is proportional to the relative delaminated area, proving that delamination is the major stiffness reduction factor in these laminates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. D. Mattsson, R. Joffe, and J. Varna, “Methodology for characterization of internal structure parameters governing performance in NCF composites,” Composites: Part B, 38, No. 1, 44-57 (2007).

  2. D. Mattsson, R. Joffe, and J. Varna, “Damage in NCF composites under tension: effect of layer stacking sequence,” Eng. Fracture Mechanics, 75, No. 9, 2666-2682 (2008).

    Article  Google Scholar 

  3. K. Vallons, S. V. Lomov, and I. Verpoest, “Fatigue and post-fatigue behaviour of carbon/epoxy noncrimp fabric composites,” Composites: Part A, 40, No. 3, 251-259 (2009).

  4. F. Edgren, D. Mattsson, L. E. Asp, and J. Varna, “Formation of damage and its effects on noncrimp fabric reinforced composites loaded in tension,” Compos. Sci. Technol., 64, No. 5, 675-692 (2004).

    Article  Google Scholar 

  5. D. S. Mikhaluk, T. C. Truong, A. I. Borovkov, S. V. Lomov, and I. Verpoest, “Experimental observations and finite element modelling of damage initiation and evolution in carbon/epoxy noncrimp fabric composites,” Eng. Fracture Mechanics, 75, No. 9, 2751-2766 (2008).

    Article  Google Scholar 

  6. S. V. Lomov, E. B. Belov, T. Bischoff, S. B. Ghosh, T. T. Chi, and I. Verpoest, “Carbon composites based on multiaxial multiply stitched preforms. Part 1. Geometry of the preform,” Composites: Part A, 33, No. 9, 1171-1183 (2002).

    Article  Google Scholar 

  7. S. V. Lomov, I. Verpoest, M. Barburski, and J. Laperre, “Carbon composites based on multiaxial multiply stitched preforms. Part 2. KES-F characterisation of the deformability of the preforms at low loads,” Composites: Part A, 34, No. 4, 359-370 (2003).

    Article  Google Scholar 

  8. S. V. Lomov, M. Barburski, T. Stoilova, I. Verpoest, R. Akkerman, R. Loendersloot, and R. H. W. Ten Thije, “Carbon composites based on multiaxial multiply stitched preforms. Part 3: Biaxial tension, picture frame and compression tests of the preforms,” Composites: Part A, 36, No. 9, 1188-1206 (2005).

    Article  Google Scholar 

  9. N. J. Pagano and G. A. Schoeppner, “Delamination of Polymer Matrix Composites: Problems and Assessment,” in A. Kelly and C. Zweben (Eds.), Comprehensive Composite Materials, 433–528, Elsevier (2000).

  10. J. Varna and H. Zrida, “Analysis of microdamage in thermally aged CF/polyimide laminates,” Mech. Compos. Mater., 53, No. 1, 45-58 (2017).

    Article  CAS  Google Scholar 

  11. K. Vallons, M. Zong, S. V. Lomov and I. Verpoest, “Carbon composites based on multi-axial multi-ply stitched preforms–Part 6. Fatigue behaviour at low loads: Stiffness degradation and damage development,” Composites: Part A, 38, No. 7, 1633-1645 (2007).

    Article  CAS  Google Scholar 

  12. M. Hojo, S. Matsuda, B. Fiedler, T. Kawada, K. Moriya, S. Ochiai, and H. Aoyama, “Mode I and II delamination fatigue crack growth behavior of alumina fiber/epoxy laminates in liquid nitrogen,” Int. J. of Fatigue, 24, No. 2-4, 109-118 (2002).

    Article  CAS  Google Scholar 

  13. A. J Brunner, S Stelzer, G. Pinter, and G. P. Terrasi, “Cyclic fatigue delamination of carbon fiber-reinforced polymermatrix composites: Data analysis and design considerations,” Int. J. of Fatigue, 83, 293-299 (2016).

  14. A. J. Brunner, “Fracture mechanics characterization of polymer composites for aerospace applications,” In P. E. Irving and C. Soutis (Eds.) Polymer composites in the aerospace industry, 191-230, Woodhead Publishing (2015).

  15. A. J. Brunner, B. R. K. Blackman, and P. Davies, “A status report on delamination resistance testing of polymer–matrix composites,” Eng. Fracture Mech., 75, No. 9, 2779-2794 (2008).

    Article  Google Scholar 

  16. ASTM D 6671-13. Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites.

  17. M. Kashtalyan and C. Soutis, “The effect of delaminations induced by transverse cracks and splits on stiffness properties of composite laminates,” Composites: Part A, 31, No. 2, 107-119 (2000).

  18. N. Takeda and S. Ogihara, “Initiation and growth of delamination from the tips of transverse cracks in CFRP cross-ply laminates,” Compos. Sci. Technol., 52, No. 3, 309-318 (1994).

    Article  CAS  Google Scholar 

  19. N. Takeda, S. Ogihara, and A. Kobayashi, “Microscopic fatigue damage progress in CFRP cross-ply laminates,” Composites, 26, No. 12, 859-867 (1995).

  20. J. Zhang, C. Soutis, and J. Fan, “Effects of matrix cracking and hygrothermal stresses on the strain energy release rate for edge delamination in composite laminates” Composites, 25, No. 1, 27-35 (1994).

  21. L. Y. Xu, “Interaction between matrix cracking and edge delamination in composite laminates,” Compos. Sci. Technol., 50, No. 4, 469-478 (1994).

    Article  CAS  Google Scholar 

  22. A. Pupurs and J. Varna, “Fracture mechanics analysis of debond growth in a single-fiber composite under cyclic loading,” Mech. Compos. Mater., 47, No. 1, 109-124 (2011).

    Article  Google Scholar 

  23. A. Pupurs, S. Goutianos, P. Brondsted, and J. Varna, “Interface debond crack growth in tension–tension cyclic loading of single fiber polymer composites,” Composites: Part A, 44, 86-94 (2013).

    Article  CAS  Google Scholar 

  24. A. P. Mouritz and B. N. Cox, “A mechanistic interpretation of the comparative in-plane mechanical properties of 3D woven, stitched and pinned composites,” Composites: Part A, 41, No. 6, 709-728 (2010).

  25. S. A. Rudov-Clark and A. P. Mouritz, “Tensile fatigue properties of a 3D orthogonal woven composite,” Composites: Part A, 39, No. 6, 1018-1024 (2008).

  26. A. P. Mouritz, “Tensile fatigue properties of 3D composites with through-thickness reinforcement,” Compos. Sci. Technol., 68, No. 12, 2503-2510 (2008).

    Article  CAS  Google Scholar 

  27. S. D, Pandita, G. Huysmans, M. Wevers, and I. Verpoest, “Tensile fatigue damage development in plain weave and knitted fabric composites (GFRP),” Proc. of the 12th Int. Conf. on Composite Materials (ICCM 12), Paris, France, 5-9 (1999).

  28. J. Zangenberg and P. Brøndsted “Fatigue life in textile composites used for wind energy engineering”, in V. Carvelli and S. V. Lomov (Eds) Fatigue of Textile Composites, Woodhead Publishing (2015)

  29. K. H. Tsai, C. H. Chiu, and T. H. Wu, “Fatigue behavior of 3D multi-layer angle interlock woven composite plates,” Compos. Sci. Technol., 60, No. 2, 241-248 (2000).

    Article  CAS  Google Scholar 

  30. V. T. Bechel, M. Negilski, and J. James, “Limiting the permeability of composites for cryogenic applications,” Compos. Sci. Technol., 66, No. 13, 2284-2295 (2006).

    Article  CAS  Google Scholar 

  31. H. B. Kahla, Z. Ayadi, F. Edgren, A. Pupurs, and J. Varna, “Statistical model for initiation governed intralaminar cracking in composite laminates during tensile quasi-static and cyclic tests,” Int. J. of Fatigue, 116, 1-12 (2018).

    Article  Google Scholar 

  32. A. Hosoi, N. Sato, Y. Kusumoto, K. Fujiwara, and H. Kawada, “High-cycle fatigue characteristics of quasi-isotropic CFRP laminates over 108 cycles (initiation and propagation of delamination considering interaction with transverse cracks),” Int. J. of Fatigue, 32, No 1, 29-36 (2010).

    Article  CAS  Google Scholar 

  33. T. K. O’Brien, “Characterization of delamination onset and growth in a composite laminate,” In Damage in Composite Materials: Basic Mechanisms, Accumulation, Tolerance, and Characterization. ASTM International (1982).

  34. B. Yu, R.S. Bradley, C. Soutis, P. J. Hogg, and P. J. Withers, “2D and 3D imaging of fatigue failure mechanisms of 3D woven composites,” Composites: Part A, 77, 37-49 (2015).

    Article  CAS  Google Scholar 

  35. R. C. Alderliesten, J. Schijve, and S. Van der Zwaag, “Application of the energy release rate approach for delamination growth in Glare,” Eng. Fracture Mech., 73, No. 6, 697-709 (2006).

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to acknowledge the support from the Swedish Aeronautical Research Program (NFFP6), Project 2014-00882, jointly funded by the Swedish Armed Forces, Swedish Defense Material Administration, the Swedish Governmental Agency for Innovation Systems and GKN Aerospace, and the Joint European Doctoral Program in Material Science and Engineering (DocMase).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Varna.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 3, pp. 437-456, May-June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kahla, H.B., Ayadi, Z. & Varna, J. Local Delaminations Induced by Interaction Between Intralaminar Cracking and Specimen Edge in Quasi-Isotropic CF/EP NCF Composites in Fatigue Loadings. Mech Compos Mater 56, 291–302 (2020). https://doi.org/10.1007/s11029-020-09881-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09881-7

Keywords

Navigation