Skip to main content
Log in

Influence of High-Frequency Radiation on the Deformation Behavior of Composites Based on Low-Molecular Rubbers Filled with Silicon Dioxide

  • Published:
Mechanics of Composite Materials Aims and scope

For the first time, the influence of microwave radiation on the structure of a three-dimensionally cross-linked, plasticized, filled polymer composite material based on low-molecular rubbers — a polydivinyl epoxyurethane rubber of grade PDI-3B and a divinyl rubber of brand SKD-KTR — was investigated. It is shown that variations in the mechanical characteristics of the composite material during irradiation are associated with its structural changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. V. Ya. Kabanov, V. I. Feldman, B. G. Ershov, et al., “Radiation chemistry of polymers,” Khimia Vysok. Energii, 43, No. 1, 5-21 (2009).

    Google Scholar 

  2. A. N. Neverov, and Yu. V. Zherdyaev, Radiation Chemistry of Polymers [in Russian], М. (1966).

  3. A. N. Neverov, Radiation Chemistry of Polymers [in Russian], М. (1966).

  4. N. N. Peschanskaya, A. G. Smolyanskii, and V. Yu. Surovova, “Changes in the creep polymethyl methacrylateа after the action of irradiation,” Vysokomol. Soed., Ser. А, 34, No. 12, 3-10 (1992).

    CAS  Google Scholar 

  5. B. A. Kozhamkulov, A. I. Kupchishin, Z. M. Bitibaeva and V. P. Tamuzs, Radiation-induced defect formation in composite materials and their destruction under electron irradiation,” Mech. Compos. Mater., 53, No. 1, 59-64 (2017).

    Article  CAS  Google Scholar 

  6. G. S. Baronin, D. O. Zavrazhin, A. G. Popov, and M. S. Tolstykh, “Influence of SHF radiation on the formation of structural-mechanical properties of modified polymer-carbon materials in the hard-phase extrusion,” Nauch. Vedom. Bel. GU, Ser. Matematika Fizika, 106, No. 11, iss. 23, 123-128 (2011).

  7. V. I. Pavlenko, R. N. Jastrebinskij, O. D. Edamenko, and D. G. Tarasov, “Action of high-energy beams of fast electrons on radiation-protective polymer composites,” Vopr. Atom. Nauki Tekhn., Ser. Fizika Radiacion. Povrezhd. Radiacion. Materialoved., 95, No. 1, 129-134 (2010).

    Google Scholar 

  8. E. M. Konova, Structure and properties of polytetrafluorethylene irradiated above the temperature of its crystal phase, Abstract of dissert. for Cand. Chem. Sci., M. (2014).

  9. S. G. Kalganova, Electrotechnology of nonthermal modification of polymer materials in the SHF electromagnetic field, Abstract of dissert. for Dr. Techn. Sci., Saratov (2009).

    Google Scholar 

  10. V. F. Kablov with coauthors, “Modification of a chlorinated natural rubber in currents of ultrahigh frequency as a way to increase its adhesion,” Probl. Shin i Rezinokord Kompoz., Materials of the 24th Symp., September 14-18, 2013. Nauch. Tekhn. Centr “NIIShT”, М., 141-142 (2013).

  11. N. Ya. Feldman, “Features of performing thermal processes in a SHF electromagnetic field,” Sovrem. Elektronika, No. 5, 64-67 (2009).

  12. Patent 2350464 of Russian Federation, A way of forming thermoplastics, No. 2007123083/12; Заявл.19.06.2007; Опубл. 27.03.2009. Бюл. No. 9.11.

  13. V. F. Kablov, 1 N. A. Keibal,1 D. A. Provotorova, and A. E. Mitchenko, “Influence of microwave radiation on the strength properties of elastomer compositions based of nonlimiting rubbers,” Sovrem. Probl. Nauki i Obrazov., Khim. Nauki, No. 5 (2014).

  14. L. I. Tarutina and O. F. Poznyakova, Spectral Analysis of Polymers [in Russian], L., Khimia (1986).

  15. F. I. Akhmed, A. D. Kuliev, R. B. Akhverdiev, A. S. Samedova, and M. B. Guseinova, “Influence of gamma radiation on the electric conductivity of polymer composites of polypropylene with alumina and iron,” Elektron. Obrab. Mater., 49, No. 6, 94-97 (2013).

    Google Scholar 

  16. A. A. Boikov, Nanocomposites on the basis of superhigh-molecular polythene for a complex radio and radiation protection, Abstract of dissert. for Cand. Techn. Sci., М. (2017).

  17. D. A. Makeiff, T. Huber, and P. Saville, Complex Permittivity of Polyaniline-Carbon Nanotube and Nanofibre Composites in the X-band: PMMA Composites. — Defence R*D Canada−Atlantic, Technical Memorandum, DRDC Atlantic TM, p. 124 (2004); p. 20 (2005).

  18. Nanomagnetism: Ultrathin Films, Multilayers and Nanostructures, eds. D. L. Mills and J. A. C. Bland, Amsterdam: Elsevier (2006).

  19. P. Mohn, Magnetism in the Solid State: An Introduction, N. Y., Springer (2006).

    Google Scholar 

  20. A. N. Kozlov, L. L. Khimenko, et al., “Measurement of a thermal capacity of a polymer structure after the action of SHF radiation,” Vest. Izh. GTU, 51, No. 3, p. 43 (2011).

    Google Scholar 

  21. A. E. Golubev, A. N. Kozlov, L. L. Khimenko, A. P. Rybakov, and N. A. Rybakov, “The general physical pattern of the influence of superhigh-frequency electromagnetic radiation on parts made of energetic polymers,” Zhurn. Obshch. Khimii, 86, No. 6 (2016). DOI: https://doi.org/10.1134/S1070363216060360

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Nurullaev.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 3, pp. 493-506, May-June, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nurullaev, E.M. Influence of High-Frequency Radiation on the Deformation Behavior of Composites Based on Low-Molecular Rubbers Filled with Silicon Dioxide. Mech Compos Mater 56, 329–338 (2020). https://doi.org/10.1007/s11029-020-09884-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09884-4

Keywords

Navigation