Skip to main content
Log in

A Progressive FE Failure Model for Laminates under Biaxial Loading

  • Published:
Mechanics of Composite Materials Aims and scope

A finite-element (FE) model simulating the elastic behavior of anisotropic glass/epoxy composite laminates subjected to a biaxial tensile loading is proposed. A progressive failure prediction and analysis are performed in the ABAQUS FE code by using user-defined constitutive equations. A numerical analysis is performed for different loading ratios and ply angles. Gradual failure patterns of fiber and matrix are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. A. Russo and B. Zuccarello, “An accurate method to predict the stress concentration in composite laminates with a circular hole under tensile loading,” Mech. Compos. Mater., 43, No. 4, 359-376 (2007).

    Article  CAS  Google Scholar 

  2. Z. X. Guo, H. Zhu, Y. C. Li, X. P. Han, and Z.H. Wang, “Simulating initial and progressive failure of open-hole composite laminates under tension,” Appl. Compos. Mater., 23, 1209-1218 (2016).

    Article  Google Scholar 

  3. P. D. Soden, A. S. Kaddour, and M. J. Hinton, “Recommendations for designers and researchers resulting from the world-wide failure exercise,” Compos. Sci. Technol., 64, 589-604 (2004).

    Article  Google Scholar 

  4. M. U. Saeed, Z. F. Chen, Z. H. Chen, and B. B. Li, “Comparison of fracture characteristics of open-hole-notch carbonfiber-reinforced composites subjected to tensile and compressive loadings,” Mech. Compos. Mater., 52, No. 6, 751-758 (2017).

    Article  CAS  Google Scholar 

  5. P. A. Zinov’Ev and S. V. Tsvetkov, “Plastic instability of a cylindrical angle-ply shell in biaxial tension,” Mech. Compos. Mater., 30, No. 5, 474-483 (1995).

    Article  Google Scholar 

  6. C. S. Lee, W. Hwang, H. C. Park, and K. S. Han, “Static strength and failure mechanism of CFRP under biaxial loadings,” Mech. Compos. Mater., 34, No. 1, 28-42 (1998).

    Article  Google Scholar 

  7. A. Smits, D. Van Hemelrijck, T. P. Philippidis, and A. Cardon, “Design of a cruciform specimen for biaxial testing of fiber reinforced composite laminates,” Compos. Sci. Technol. 66, 964-975 (2006).

    Article  Google Scholar 

  8. V. Strizhius, “Estimation of the residual fatigue life of laminated composites under a multistage cyclic loading,” Mech. Compos. Mater., 52, No. 5, 611-622 (2016).

    Article  Google Scholar 

  9. L. Leotoing, D. Guines, I. Zidane, and E. Ragneau, “Cruciform shape benefits for experimental and numerical evaluation of sheet metal formability,” J. Mater. Process. Tech., 213, 856–863 (2013).

    Article  CAS  Google Scholar 

  10. R. Baptista, R.A.Claudio, L. Reis, J.F.A. Madeira, I. Guelho, and M.Freitas, “Optimization of cruciform specimens for biaxial fatigue loading with direct multi search,” Theor. Appl. Fract. Mech., 80, 65-72 (2015).

    Article  Google Scholar 

  11. M. C. Serna Moreno and J.J López Cela, “Failure envelope under biaxial tensile loading for chopped glass-reinforced polyester composites,” Compos. Sci. Technol., 72, 91-96 (2011).

  12. M. D. Muhamad Irwan, M. A. Zurri Adam, and J. Mahmud, “Failure analysis of composite laminates under biaxial tension: A review and framework,” Appl. Mech. Mater., 680, No. 6, 160-163 (2016).

    Google Scholar 

  13. J. S. Welsh, J. S. Mayes, and A. C. Biskner, “2-D biaxial testing and failure predictions of IM7/977-2 carbon/epoxy quasi-isotropic laminates,” Compos. Struct., 75, 60-66 (2006).

    Article  Google Scholar 

  14. A. E. Antoniou, D. Van Hemelrijck, and T. P. Philippidis, “Failure prediction for a glass/epoxy cruciform specimen under static biaxial loading,” Compos. Sci. Technol., 70, 1232-1241 (2010).

    Article  CAS  Google Scholar 

  15. C. Xu, L. Song, H. Zhu, S. Meng, W. Xie, and H. Jin, “Experimental investigation on the mechanical behaviour of 3D carbon/carbon composites under biaxial compression,” Compos. Struct., 188, 7-14 (2018).

    Article  Google Scholar 

  16. A. Rashedi, I. Sridhar, and K. J. Tseng, “Fracture characterization of glass fiber composite laminate under experimental biaxial loading,” Compos. Struct., 138, 17-29 (2015).

    Article  Google Scholar 

  17. J. Navarro-Zafra, J.L. Curiel-Sosa, and C. S. Cerna Moreno, “Mixed-mode damage into a CGRP cruciform subjected to biaxial loading,” Compos. Struct., 133, 1093-1100 (2015).

    Article  Google Scholar 

  18. D. Cai, J. Tang, G. Zhou, X. Wang, C. Li, and V. V. Silberschmidt, “Failure analysis of plain woven glass/epoxy laminates: Comparison of off-axis and biaxial tension loadings,” Polym. Test., 60, 307-320 (2017).

    Article  CAS  Google Scholar 

  19. Y. Ismail, D. Yang, and J. Ye, “A DEM model for visualising damage evolution and predicting failure envelope of composite laminate under biaxial loads,” Compos. Part B-Eng, 102, 9-28 (2016).

    Article  CAS  Google Scholar 

  20. Z. Hashin and A. Rotem, “A fatigue failure criterion for fiber reinforced materials,” J. Compos. Mater., 7, 448-464 (1973).

    Article  Google Scholar 

  21. A. Puck and H. Schürmann, “Failure analysis of FRP laminates by means of physically based phenomenological models,” Compos. Sci. Technol., 58, 1045-1067 (1998).

    Article  Google Scholar 

  22. L Távara, V. Mantič, E. Graciani, and F. París, “Modelling interfacial debonds in unidirectional fiber-reinforced composites under biaxial transverse loads,” Compos. Struct., 136, 305-312 (2015).

  23. J. Montesano and C. V. Singh, “Predicting evolution of ply cracks in composite laminates subjected to biaxial loading,” Compos. Part B-Eng., 75, 264-273 (2015).

    Article  CAS  Google Scholar 

  24. H. T. Hu, W. P. Lin, and F. T. Tu, “Failure analysis of fiber-reinforced composite laminates subjected to biaxial loads,” Compos. Part B-Eng, 83, 153-165 (2015).

    Article  CAS  Google Scholar 

  25. A. M. Gadade, A. Lal, and B. N. Singh, “Finite element implementation of Puck’s failure criterion for failure analysis of laminated plate subjected to biaxial loadings,” Aerosp. Sci. Technol., 55, 227-241 (2016).

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (grant Nos. 11602160 and 11402160), the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (grant No. 2017117), the Opening Foundation for State Key Laboratory for Strength and Vibration of Mechanical Structures (grant No. SV2019-KF-01), and the “1331 project” Key Innovation Teams of Shanxi Province.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z. X. Guo.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 2, pp. 311-320, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, H., Guo, Z.X., Zhu, M. et al. A Progressive FE Failure Model for Laminates under Biaxial Loading. Mech Compos Mater 56, 207–214 (2020). https://doi.org/10.1007/s11029-020-09873-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09873-7

Keywords

Navigation