Skip to main content
Log in

Influence of the Thickness of a Polymer Shell Applied to Surfaces of Submicron Filler Particles on the Properties of Polymer Compositions

  • Published:
Mechanics of Composite Materials Aims and scope

The results of studies into the influence of the thickness of a polystyrene shell applied to surfaces of dispersed corundum (Al2O3) filler particles on the structure and mechanical properties of the composition of an acrylonitrile butadiene styrene plastic are presented. It is shown that the mechanical properties of the composition depend at least on two factors: the interaction between shell molecules and the polymer matrix, and the ratio of shell thickness to the average size of submicron particles of the filler. The change in the mechanical properties of the composition is explained by the decreasing mobility of polymer macromolecules near the encapsulated filler particles due to the increasing adhesion of macromolecules to the polymer shell. It was shown experimentally that the Martens hardness, elastic modulus, tensile strength, and rupture strain can be changed in some range by varying the thickness of the polymer shell on the surfaces of corundum particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

References

  1. G. Schmidt and M. M. Malwitz, “Properties of polymer-nanoparticle composites,” Current Opinion in Colloid and Interface Science, 8, No. 1, 103–108 (2003).

  2. M. S. Senthil Kumar, N. Mohana Sundara Raju, P. S. Sampath, and L. S. Jayakumari, “Effects of nanomaterials on polymer composites — an expatriate view,” Rev. Adv. Mater. Sci., 38, No. 1, 40–54 (2014). 3. T. F. Irzhak and V. I Irzhak, “Epoxy nanocomposites,” Vysokomolekular. Soed., Ser. A, 59, No. 6, 485–522 (2017).

  3. N. Z. Lyakhov, V. E. Panin, D. V. Dudina, M. A. Korchagin, O. I. Lomovskii, Yu. V. Grinyaev, V. G. Durakov, S. V. Panin, and Yu. I. Pochivalov, “Development of structural materials based on nanocomposite powders, Part I,” Fiz. Mezomekhanika, 6, No. 3, 61–73 (2003).

    Google Scholar 

  4. O. Yu. Bogomolova, I. R. Biktagirova, M. P. Danilaev, M. A. Klabukov, Yu. E. Polsky, Saju Pillai, and A. A. Tsentsevitsky, Effect of adhesion between submicron filler particles and a polymeric matrix on the structure and mechanical properties of epoxy—resin—based compositions,” Mech. Compos. Mater., 53, No. 1, 117–122 (2017).

  5. R. Abraham, S. P. Thomas, S.Kuryan, J. Isac, K. T. Varughese, and S. Thomas, “Mechanical properties of ceramicpolymer nanocomposites,” eXPRESS Polym. Lett., 3, No. 3, 177–189 (2009).

    Article  CAS  Google Scholar 

  6. D. Guo, G. X. Xie, and J. B. Luo, “Mechanical properties of nanoparticles: basics and applications,” J. Phys. D: Appl. Phys., 47, No. 1, 1–25 (2014). DOI:10.1088/0022–3727/47/1/013001

  7. Surface Modification of Nanoparticle and Natural Fiber Fillers, Ed. Vikas Mittal. – Wiley&VCH Verlag GmbH & Co. KGaA, 2015. DOI:10.1002/9783527670260

  8. A. Pakdel, Y. Bando, and D. Golberg, “Plasma-assisted interface engineering of boron nitride nanostructure films,” ACS Nano, 8, No. 10, 10631–10639 (2014).

  9. Rajib Ghosh Chaudhuri and Santanu Paria, “Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications,” Chem. Rev., 112, No. 4, 2373–2433 (2012).

  10. J. G. Oh and H. S. Kim, “Synthesis of core-shell nanoparticles with a Pt nanoparticle core and a silica shell,” Current Applied Physics, 13, No. 1, 130–136 (2013).

  11. S. Amirchakhmaghi, A. Alavi Nia, G. Azizpour , and H. Bamdadi, “The effect of surface treatment of alumina nanoparticles with a silane coupling agent on the mechanical properties of polymer nanocomposites,” Mech. Compos. Mater., 51, No. 3, 347–358 (2015).

    Article  CAS  Google Scholar 

  12. D. A. Chernous, S. V. Shil’ko, and S. V. Panin, “Analysis of the mechanical behaviour of a dispersedly reinforced nanocomposite. A method for calculating the effective elastic characteristics,” Fiz. Mezomekhanika, 13, No. 4, 85–90 (2010).

    Google Scholar 

  13. Gutiérrez–Mejía, W. Herrera–Kao, S. Duarte–Aranda, M. I. Loría–Bastarrachea, G. Canché–Escamilla, F. J. Moscoso–Sánchez, J. V. Cauich–Rodríguez, and J. M. Cervantes, “Synthesis and characterization of core–shell nanoparticles and their influence on the mechanical behavior of acrylic bone cements,” Materials Sci. Eng. C, 33, No. 3, 1737–1743 (2013).

  14. M. Ziabka, M. Dziadek, and E. Menaszek, “Biocompatibility of poly (acrylonitrile–butadiene–styrene) nanocomposites modified with silver nanoparticles,” Polymers, 10, No. 11, 1257–1270 (2018).

  15. M. L. Wu, Sh. F. He, D. H. Li, and J. J. Fan, “Study on recycling ABS plastic/nano CaCO3 /TiO2 /POE modified composites,” IOP Conf. Ser.: Mater. Sci. Eng., 439, Part 2, 1162–1168 (2018).

  16. A. Abedini, T. Asiyabi, H. R. Campbell, R. Hasanzadeh, and T. Azdast, “On fabrication and characteristics of injection molded ABS/ Al2O3 nanocomposites,” Int. J. Advanced Manufacturing Technol., 102, Nos. 5–8, 1747–1758 (2019).

  17. V. N. Kuleznev and V. A. Shershnev, Polymer Chemistry and Physics [in Russian], Vysshaya Shkola, Moscow (1996).

    Google Scholar 

  18. N. T. Kakhramanov and Sh. R. Bagirova, “The properties of nanocomposites based on styrene plastics,” Plast. Massy, Nos. 3–4, 5–9 (2015).

  19. N. G. Rambidi and A. V. Berezkin, Physical and Chemical Foundations of Nanotechnology, Fizmatlit, Moscow (2008).

    Google Scholar 

  20. R. Falck, J. F. dos Santos, and S. T. Amancio–Filho, “Microstructure and mechanical performance of additively manufactured aluminum 2024–T3/ acrylonitrile butadiene styrene hybrid joints using an adjoining technique,” Materials, 12, No. 6, 864–890 (2019).

  21. M. P. Danilaev, N. V. Dorogov, F. A. Karamov, V. A. Kuklin, and A. V. Pushkareva, “Investigation of the characteristics of a device forming a low-speed two-phase gas flow with submicron-size solid particles,” Nauch. Tekhn. Vest. Povolzhja, No. 3, 74–77 (2019).

    Google Scholar 

  22. B. J. Berne and R. Pecora, Dynamic Light Scattering with Applications to Chemistry, Biology and Physics, Willey-Intersci., New York (1976).

    Google Scholar 

  23. S. Dul, L. Fambri, and A. Pegoretti, “Fused deposition modelling with ABS–graphene nanocomposites,” Composites, Pt. A, 85, 181–191 (2016).

  24. V. Kumar, J. R. Kumar, S. Aravindan, S. K. Malhotra, K. Vijai, and M. Shukla, “Fabrication and characterization of ABS nano composite reinforced by nano sized alumina particulates,” Int. J. Plastics Technol., 13, No. 2, 133–149 (2009).

    Article  CAS  Google Scholar 

  25. S. Dul, A. Pegoretti, and L. Fambri, “Effects of the nanofillers on physical properties of acrylonitrile–butadiene–styrene nanocomposites: Comparison of graphene nanoplatelets and multiwall carbon nanotubes,” Nanomaterials, 8, No. 9, 674–692 (2018). doi:https://doi.org/10.3390/nano8090674

  26. M. E. J. Dekkers and D. Heikens, “Shear band formation in polycarbonate—glass bead composites,” J. Mater. Sci., 19, No. 10, 3271–3275 (1984).

    Article  CAS  Google Scholar 

  27. M. P. Danilaev, O. Yu. Bogomolova, E. A. Bogoslov, S. A. Mikhailov, Yu. E. Pol’skii, and D. M. Pashin, “Encapsulation of submicron particles with polymer,” Nanotechnologies in Russia, 9, Nos. 11–12, 645–649 (2014).

  28. Physical and Chemical Processes in Gas Dynamics. A Computerized Handbook in 3 vols. V. 1: Dynamics of Physical and Chemical Processes in Gas and Plasma, Eds. G. G. Chernyi and S. A. Losev, [in Russian], Izd. Moscov. Univ. (1995).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Danilaev.

Additional information

Translated from Mekhanika Kompozitnykh Materialov, Vol. 56, No. 2, pp. 357-368, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhmadeev, A.A., Bogoslov, E.A., Danilaev, M.P. et al. Influence of the Thickness of a Polymer Shell Applied to Surfaces of Submicron Filler Particles on the Properties of Polymer Compositions. Mech Compos Mater 56, 241–248 (2020). https://doi.org/10.1007/s11029-020-09876-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09876-4

Keywords

Navigation