Skip to main content
Log in

Determining the Tensile Properties and Dispersion Characterization of CNTs in Epoxy Using Tem and Raman Spectroscopy

  • Published:
Mechanics of Composite Materials Aims and scope

In this work, transmission electron microscopy (TEM) and Raman spectroscopy were used to assess the dispersion quality of carbon nanotubes (CNTs) in an epoxy matrix. Its ultimate tensile strength (UTS), engineering strain, local strain, and the elastic tensile modulus were determined experimentally. The effect of CNT sonication time in an ethanol medium was also evaluated. A statistical analysis using the t-test approach was employed to clarify how the use of CNTs affects the mechanical properties of the matrix. An increase in the UTS by 10 and 7% was observed in the cases of 0.1 wt.% single-walled carbon nanotubes (SWCNTs) and multiwalled carbon nanotubes (MWCNTs), respectively, but the elastic modulus increased significantly when using MWCNTs. A TEM analysis indicated that the dispersion quality was proportional to the content of CNTs. It is concluded that a CNT-reinforced epoxy matrix is highly sensitive to the amount of CNTs, which can explain the conflicting properties reported for such matrices in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.

Similar content being viewed by others

References

  1. M. Bourchak, A. Algarni, A. Khan, and U. Khashaba, “Effect of SWCNTs and graphene on the fatigue behavior of antisymmetric GFRP laminate,” Compos. Sci. Technol., 167, 164–173 (2018).

    Article  CAS  Google Scholar 

  2. A. Kausar, I. Rafique, and B. Muhammad, “Review of applications of polymer/carbon nanotubes and epoxy/cnt composites,” Polym–Plast. Technol., 55, No. 11, 1167–1191 (2016).

    Article  CAS  Google Scholar 

  3. W. Khan, R. Sharma, and P. Saini, in : M. Berber and I. H. Hafez (eds.), Carbon Nanotubes – Current Progress of their Polymer Composites, Ch. 1, InTech, Rijeka, Croatia (2016).

    Google Scholar 

  4. Y. Jiang, H. Song, and R. Xu, “Research on the dispersion of carbon nanotubes by ultrasonic oscillation, surfactant and centrifugation respectively and fiscal policies for its industrial development,” Ultrason. Sonochem., 48, 30–38 (2018).

    Article  CAS  Google Scholar 

  5. K. Almuhammadi, M. Alfano, Y. Yang, and G. Lubineau, “Analysis of interlaminar fracture toughness and damage mechanisms in composite laminates reinforced with sprayed multi–walled carbon nanotubes,” Mater. Des., 53, 921–927 (2014).

    Article  CAS  Google Scholar 

  6. A. Montazeri, J. Javadpour, A. Khavandi, A. Tcharkhtchi, and A. Mohajeri, “Mechanical properties of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 31, No. 9, 4202–4208 (2010).

    Article  CAS  Google Scholar 

  7. U. Khan, K. Ryan, W. J. Blau, and J. N. Coleman, “The effect of solvent choice on the mechanical properties of carbon nanotube–polymer composites,” Compos. Sci. Technol., 67, No. 15–16, 3158–3167 (2007).

    Article  CAS  Google Scholar 

  8. I. Alig, P. Pötschke, D. Lellinger, T. Skipa, S. Pegel, G. R. Kasaliwal, and T. Villmow, “Establishment, morphology and properties of carbon nanotube networks in polymer melts,” Polymer, 53, No. 1, 4–28 (2012).

    Article  CAS  Google Scholar 

  9. A. Algarni, “Enhancing the mechanical properties of aerospace fiber reinforced polymer composite materials using nanoparticles,” PhD Thesis, King Abdulaziz University, KSA (2018).

  10. P.–C. Ma, N. A. Siddiqui, G. Marom, and J.–K. Kim, “Dispersion and functionalization of carbon nanotubes for polymer–based nanocomposites: A review,” Compos. Part A–Appl. S., 41, No. 10, 1345–1367 (2010).

  11. S. Bose, R.A. Khare, and P. Moldenaers, “Assessing the strengths and weaknesses of various types of pre–treatments of carbon nanotubes on the properties of polymer/carbon nanotubes composites: a critical review,” Polymer, 51, No. 5, 975–993 (2010).

  12. L.–J. Cui, Y.–B. Wang, W.–J. Xiu, W.–Y. Wang, L.–H. Xu, X.–B. Xu, Y. Meng, L.–Y. Li, J. Gao, L.–T. Chen, and H.–Z. Geng, “Effect of functionalization of multi–walled carbon nanotube on the curing behavior and mechanical property of multi–walled carbon nanotube/epoxy composites,” Mater. Des., 49, 279–284 (2013).

  13. A. Tugrul Seyhan, M. Tanoglu, and K. Schulte, “Mode I and mode II fracture toughness of e–glass non–crimp fabric/ carbon nanotube (CNT) modified polymer based composites,” Eng. Fract. Mech., 75, No. 18, 5151–5162 (2008).

    Article  Google Scholar 

  14. S. Rahmanian, A. R. Suraya, M. A Shazed, R. Zahari, and E. S. Zainudin, “Mechanical characterization of epoxy composite with multiscale reinforcements: carbon nanotubes and short carbon fibers,” Mater. Des., 60, 34–40 (2014).

    Article  CAS  Google Scholar 

  15. I. O’Connor, H. Hayden, S. O’Connor , J. N. Coleman, and Y. K. Gun’ko, “Polymer reinforcement with kevlar–coated carbon nanotubes,” J. Phys. Chem. C., 113, No. 47, 20184–20192 (2009)

    Article  Google Scholar 

  16. K. J . Green, D. R. Dean, U. K. Vaidya, and E. Nyairo, “Multiscale fiber reinforced composites based on a carbon nanofiber/epoxy nanophased polymer matrix: synthesis, mechanical, and thermomechanical behavior,” Compos. Part A–Appl. S., 40, No. 9, 1470–1475 (2009).

  17. E. N. Ganesh, “Single walled and multi walled carbon nanotube structure, synthesis and applications,” IJITEE, 2, No. 4, 2278–3075 (2013).

  18. M. R. Ayatollahi, S. Shadlou, M. M. Shokrieh, and M. Chitsazzadeh, “Effect of multi–walled carbon nanotube aspect ratio on mechanical and electrical properties of epoxy–based nanocomposites,” Polym. Test., 30, No. 5, 548–556 (2011).

    Article  CAS  Google Scholar 

  19. M. Kumar and Y. Ando, “Chemical vapor deposition of carbon nanotubes: a review on growth mechanism and mass production,” J. Nanosci. Nanotechno., 10, No. 6, 3739–3758 (2010).

    Article  CAS  Google Scholar 

  20. R. Xiang, E. Einarsson, J. Okawa, Y. Miyauchi, and S. Maruyama, “Acetylene–accelerated alcohol catalytic chemical vapor deposition growth of vertically aligned single–walled carbon nanotubes,” J. Phys. Chem. C, 113, No. 18, 7511–7515 (2009).

    Article  CAS  Google Scholar 

  21. D.–J. Yun, K. Hong, S. hyun Kim, W.–M. Yun, J. Jang, W.–S. Kwon, C.–E. Park, and S.–W. Rhee, “Multiwall carbon nanotube and poly(3,4–ethylenedioxythiophene): polystyrene sulfonate (PEDOT:PSS) composite films for transistor and inverter devices,” ACS. Appl. Mater. Inter., 3, No. 1, 43–49 (2011).

    Article  CAS  Google Scholar 

  22. Q. Zhang, J. Wu, L. Gao, T. Liu, W. Zhong, G. Sui, G. Zheng, W. Fang, and X. Yang, “Dispersion stability of functionalized MWCNT in the epoxy–amine system and its effects on mechanical and interfacial properties of carbon fiber composites,” Mater. Des., 94, 392–402 (2016).

    Article  CAS  Google Scholar 

  23. K. Jagadish, S. Srikantaswamy, K. Byrappa, L. Shruthi, and M. R. Abhilash, “Dispersion of multiwall carbon nanotubes in organic solvents through hydrothermal supercritical condition,” J. Nanomater., 2015, 1–6 (2015).

    Article  Google Scholar 

  24. J. Zhou, J. Cheiftz, R. Li, F. Wang, X. Zhou, T.–K. Sham, X. Sun, and Z. Ding, “Tailoring multi–wall carbon nanotubes for smaller nanostructures,” Carbon, 47, No. 3, 829–838 (2009).

    Article  CAS  Google Scholar 

  25. C.–X. Liu and J.–W. Choi, “Improved dispersion of carbon nanotubes in polymers at high concentrations,” Nanomaterials, 2, No. 4, 329–347 (2012).

    Article  CAS  Google Scholar 

  26. S. Manivannan, I. O. Jeong, J. H. Ryu, C. S. Lee, K. S. Kim, J. Jang, and K. C. Park, “Dispersion of single–walled carbon nanotubes in aqueous and organic solvents through a polymer wrapping functionalization, “ J. Mater. Sci. Mater. Electron., 20, No. 3, 223–229 (2009).

    Article  CAS  Google Scholar 

  27. Q. Li, M. Zaiser, and V. Koutsos, “Carbon nanotube/epoxy resin composites using a block copolymer as a dispersing agent,” Phys. Status. Solidi., 201, No. 13, R89–91 (2004).

    Article  CAS  Google Scholar 

  28. X. C. Zhang, H. X. Peng, A. P. Limmack, and F. Scarpa, “Viscoelastic damping behaviour of cup stacked carbon nanotube modified epoxy nanocomposites with tailored interfacial condition and re–agglomeration,” Compos. Sci. Technol., 105, 66–72 (2014).

    Article  CAS  Google Scholar 

  29. F. H. Gojny, M. H. G. Wichmann, B. Fiedler, and K. Schulte, “Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – a comparative study,” Compos. Sci. Technol., 65, No. 15–16, 2300–2313 (2005).

    Article  CAS  Google Scholar 

  30. M. Kim, Y.–B. Park, O. I. Okoli, and C. Zhang, “Processing, characterization, and modeling of carbon nanotube–reinforced multiscale composites,” Compos. Sci. Technol., 69, No. 3–4, 335–342 (2009).

  31. M. Jamal–Omidi and M. ShayanMehr, “Improving the dispersion of SWNT in epoxy resin through a simple Multi–Stage method,” J. King Saud Univ. – Sci., 31, No. 2, 202–208 (2019).

  32. M. Yourdkhani and P. Hubert, “A systematic study on dispersion stability of carbon nanotube–modified epoxy resins,” Carbon, 81, No. 1, 251–259 (2015).

    Article  CAS  Google Scholar 

  33. L. Bokobza and J. Zhang, “Raman spectroscopic characterization of multiwall carbon nanotubes and of composites,” Express Polym. Lett., 6, No. 7, 601–608 (2012).

    Article  CAS  Google Scholar 

  34. C. Vix–Guterl, M. Couzi, J. Dentzer, M. Trinquecoste, and P. Delhaes, “Surface characterizations of carbon multiwall nanotubes: comparison between surface active sites and raman spectroscopy,” J. Phys. Chem. B, 108, No. 50, 19361–19367 (2004).

    Article  Google Scholar 

  35. ASTM, D638–02a. Standard Test Method for Tensile Properties of Plastics. ASTM International, West Conshohocken, PA, USA (2002).

  36. D. Ren, “Understanding statistical hypothesis testing,” J. Emerg. Nurs., 35, No. 1, 57–59 (2009).

    Article  Google Scholar 

  37. S. M. C. Pereira and G. Leslie, “Hypothesis testing,” Aust. Crit. Care, 22, No. 4, 187–191 (2009).

    Article  Google Scholar 

Download references

Acknowledgment

This project was funded by the Deanship of Scientific Research (DSR), at King Abdulaziz University, Jeddah, under grant No. G–511–135–36. The authors, with thanks, acknowledge DSR for the technical and financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bourchak.

Additional information

Russian translation published in Mekhanika Kompozitnykh Materialov, Vol. 56, No. 2, pp. 321-336, March-April, 2020.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourchak, M., Juhany, K.A., Salah, N. et al. Determining the Tensile Properties and Dispersion Characterization of CNTs in Epoxy Using Tem and Raman Spectroscopy. Mech Compos Mater 56, 215–226 (2020). https://doi.org/10.1007/s11029-020-09874-6

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11029-020-09874-6

Keywords

Navigation