Skip to main content
Log in

Continuity of utility maximization under weak convergence

  • Published:
Mathematics and Financial Economics Aims and scope Submit manuscript

Abstract

In this paper we find tight sufficient conditions for the continuity of the value of the utility maximization problem from terminal wealth with respect to the convergence in distribution of the underlying processes. We also establish a weak convergence result for the terminal wealths of the optimal portfolios. Finally, we apply our results to the computation of the minimal expected shortfall (shortfall risk) in the Heston model by building an appropriate lattice approximation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Backhoff Veraguas, J., Francisco, J.S.: Sensitivity analysis for expected utility maximization in incomplete Brownian market models. Math. Financ. Econ. 12(3), 387–411 (2018). https://doi.org/10.1007/s11579-017-0209-9

    Article  MathSciNet  MATH  Google Scholar 

  2. Bank, P., Baum, D.: Hedging and portfolio optimization in financial markets with a large trader. Math. Finance 14(1), 1–18 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bayraktar, E., Ross, K.: Stability of exponential utility maximization with respect to market perturbations. Stoch. Process. Appl. 123(5), 1071–1690 (2013). https://doi.org/10.1016/j.spa.2012.12.007

    Article  MathSciNet  MATH  Google Scholar 

  4. Biagini, S., Marco, F.: A unified framework for utility maximization problems: an Orlicz space approach. Ann. Appl. Probab. 18(3), 929–966 (2008). https://doi.org/10.1214/07-AAP469

    Article  MathSciNet  MATH  Google Scholar 

  5. Billingsley, P.: Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics. Wiley, New York, second edition, 1999. ISBN 0-471-19745-9. A Wiley-Interscience Publication. https://doi.org/10.1002/9780470316962

  6. Collevecchio, A., Hamza, K., Meng, S.: Bootstrap random walks. Stoch. Process. Appl. 126(6), 1744–1760 (2016). https://doi.org/10.1016/j.spa.2015.11.016

    Article  MathSciNet  MATH  Google Scholar 

  7. Cox, J., Huang, C.: Optimal consumption and portfolio policies when asset prices follow a diffusion process. J. Econ. Theory 49, 33–83 (1989)

    Article  MathSciNet  Google Scholar 

  8. Cox, J.C., Ingersoll, J.E., Ross, S.A.: A theory of the trerm structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  9. Cvitanić, J., Schachermayer, W., Hui, W.: Erratum to: Utility maximization in incomplete markets with random endowment [ MR1841719]. Finance Stoch. 21(3), 867–872 (2017). https://doi.org/10.1007/s00780-017-0331-9

    Article  MathSciNet  MATH  Google Scholar 

  10. Cvitanić, J., Pham, H., Touzi, N.: Super-replication in stochastic volatility models with portfolio constraints. J. Appl. Probab. 36, 523–545 (1999)

    Article  MathSciNet  Google Scholar 

  11. Cvitanić, J., Schachermayer, W., Hui, W.: Utility maximization in incomplete markets with random endowment. Finance Stoch. 5(2), 259–272 (2001). https://doi.org/10.1007/PL00013534

    Article  MathSciNet  MATH  Google Scholar 

  12. Delbaen, F., Walter, S.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300(3), 463–520 (1994). https://doi.org/10.1007/BF01450498

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolinsky, Y., Ariel, N.: Super-replication in fully incomplete markets. Math. Finance 28(2), 483–515 (2018). https://doi.org/10.1111/mafi.12149

    Article  MathSciNet  MATH  Google Scholar 

  14. Dudley, R.M.: Distances of probability measures and random variables. Ann. Math. Stat. 39, 1563–1572 (1968). https://doi.org/10.1007/978-1-4419-5821-1_4

    Article  MathSciNet  MATH  Google Scholar 

  15. Duffie, D., Protter, P.: From discrete- to continuous-time finance: weak convergence of the financial gain process. Math. Finance 2, 1–15 (1992)

    Article  Google Scholar 

  16. Ethier, S.N., Kurtz, T.G.: Markov processes. Wiley Series in Probability and Mathematical Statistics: Probability and Mathematical Statistics. Wiley, New York. ISBN 0-471-08186-8 (1986). Characterization and convergence. https://doi.org/10.1002/9780470316658

  17. Frey, R., Sin, C.A.: Bounds on European option prices under stochastic volatility. Math. Finance 9(2), 97–116 (1999). https://doi.org/10.1111/1467-9965.00064

    Article  MathSciNet  MATH  Google Scholar 

  18. Göing-Jaeschke, A.: A survey and some generalizations of Bessel processes. Bernoulli 9(2), 313–349 (2003). https://doi.org/10.3150/bj/1068128980

    Article  MathSciNet  MATH  Google Scholar 

  19. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  20. He, H.: Optimal consumption-portfolio policies: a convergence from discrete to continuous time models. J. Econ. Theory 55, 340–363 (1991)

    Article  MathSciNet  Google Scholar 

  21. Hu, Y., Imkeller, P., Matthias, M.: Utility maximization in incomplete markets. Ann. Appl. Probab. 15(3), 1691–1712 (2005). https://doi.org/10.1214/105051605000000188

    Article  MathSciNet  MATH  Google Scholar 

  22. Hubalek, F., Walter, S.: When does convergence of asset price processes imply convergence of option prices? Math. Finance 8(4), 385–403 (1998). https://doi.org/10.1111/1467-9965.00060

    Article  MathSciNet  MATH  Google Scholar 

  23. Hull, J., White, A.: Pricing of options on assets with stochastic volatility. J. Finance 42, 281–300 (1987)

    Article  Google Scholar 

  24. Jacod, J., Méléard, S., Protter, P.: Explicit form and robustness of martingale representations. Ann. Probab. 28, 1747–1780 (2000)

    Article  MathSciNet  Google Scholar 

  25. Jacod, E., Clotilde, N.: Convergence of utility functions and convergence of optimal strategies. Finance Stoch. 8(1), 133–144 (2004). https://doi.org/10.1007/s00780-003-0106-3

    Article  MathSciNet  MATH  Google Scholar 

  26. Karatzas, I., Lehoczky, J.P., Shreve, S.E., Xu, G.-L.: Martingale and duality methods for utility maximization in an incomplete market. SIAM J. Control Optim. 29(3), 702–730 (1991). https://doi.org/10.1137/0329039

    Article  MathSciNet  MATH  Google Scholar 

  27. Kardaras, C., Zitkovic, G.: Stability of the utility maximization problem with random endowment in incomplete markets. Math. Finance 21(2), 313–333 (2011). https://doi.org/10.1111/j.1467-9965.2010.00433.x

    Article  MathSciNet  MATH  Google Scholar 

  28. Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9(3), 904–950 (1999). https://doi.org/10.1214/aoap/1029962818

    Article  MathSciNet  MATH  Google Scholar 

  29. Kramkov, D.O.: Optional decomposition of supermartingales and hedging contingent claims in incomplete security markets. Probab. Theory Relat. Fields 105(4), 459–479 (1996). https://doi.org/10.1007/BF01191909

    Article  MathSciNet  MATH  Google Scholar 

  30. Kasper, L.: Continuity of utility-maximization with respect to preferences. Math. Finance 19(2), 237–250 (2009). https://doi.org/10.1111/j.1467-9965.2009.00365.x

    Article  MathSciNet  MATH  Google Scholar 

  31. Larsen, K., Gordan, Ž.: Stability of utility-maximization in incomplete markets. Stoch. Process. Appl. 117(11), 1642–1662 (2007). https://doi.org/10.1016/j.spa.2006.10.012

    Article  MathSciNet  MATH  Google Scholar 

  32. Larsen, K., Yu, H.: Horizon dependence of utility optimizers in incomplete models. Finance Stoch. 16(4), 779–801 (2012). https://doi.org/10.1007/s00780-012-0171-6

    Article  MathSciNet  MATH  Google Scholar 

  33. Larsen, K., Mostovyi, O., Gordan, Ž.: An expansion in the model space in the context of utility maximization. Finance Stoch. 22(2), 297–326 (2018). https://doi.org/10.1007/s00780-017-0353-3

    Article  MathSciNet  MATH  Google Scholar 

  34. Merton, R.C.: Lifetime portoflio selection under uncertainty: the continuous time case. Rev. Econ. Stat. 51, 247–257 (1969)

    Article  Google Scholar 

  35. Merton, R.C.: Optimum consumption and portfolio rules in a contiunous-time model. J. Econ. Theory 3, 373–413 (1971)

    Article  MathSciNet  Google Scholar 

  36. Mostovyi, O., Sîrbu, M.: Sensitivity analysis of the utility maximizationproblem with respect to model perturbations. preprint, arXiv:1705.08291 (2018)

  37. Mulinacci, S.: The efficient hedging problem for American options. Finance Stoch. 15(2), 365–397 (2011). https://doi.org/10.1007/s00780-010-0151-7

    Article  MathSciNet  MATH  Google Scholar 

  38. Neufeld, A.: Buy-and-hold property for fully incomplete markets when super-replicating markovian claims. Int. J. Theor. Appl. Finance 21(08), 1850051 (2018). https://doi.org/10.1142/S0219024918500516

    Article  MathSciNet  MATH  Google Scholar 

  39. Prigent, J.-L.: Weak convergence of financial markets. Springer Finance. Springer, Berlin (2003). ISBN 3-540-42333-8. https://doi.org/10.1007/978-3-540-24831-6

  40. Rásonyi, M., Lukasz, S.: On utility maximization in discrete-time financial market models. Ann. Appl. Probab. 15(2), 1367–1395 (2005). https://doi.org/10.1214/105051605000000089

    Article  MathSciNet  MATH  Google Scholar 

  41. Reichlin, C.: Behavioral portfolio selection: asymptotics and stability along a sequence of models. Math. Finance 26(1), 51–85 (2016). https://doi.org/10.1111/mafi.12053

    Article  MathSciNet  MATH  Google Scholar 

  42. Sin, C.A.: Complications with stochastic volatility models. Adv. Appl. Probab. 30(1), 256–268 (1998). https://doi.org/10.1239/aap/1035228003

    Article  MathSciNet  MATH  Google Scholar 

  43. Whitt, W.: Proofs of the martingale FCLT. Probab. Surv. 4, 268–302 (2007). https://doi.org/10.1214/07-PS122

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erhan Bayraktar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

E. Bayraktar is supported in part by the National Science Foundation and in part by the Susan M. Smith Professorship. Y. Dolinsky is supported in part by the Israeli Science Foundation under Grant 160/17.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayraktar, E., Dolinsky, Y. & Guo, J. Continuity of utility maximization under weak convergence. Math Finan Econ 14, 725–757 (2020). https://doi.org/10.1007/s11579-020-00274-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11579-020-00274-x

Keywords

AMS 2010 Subject Classifications

JEL Classifications

Navigation