Skip to main content
Log in

The golden age of high-energy gamma-ray astronomy: the Cherenkov Telescope Array in the multimessenger era

  • Review Paper
  • Published:
La Rivista del Nuovo Cimento Aims and scope

Abstract

High-energy photons are a powerful tool to understand the most violent phenomena in our Universe. However, detecting gamma-ray photons is a daunting task both owing to the overwhelming presence of cosmic rays and to the opacity of our atmosphere. Thus, direct detection of gamma-ray photons must be done in space, while instruments on the ground can see very high-energy photons through the secondary particles they produce in the atmosphere. Mastering space instruments as well as ground-based ones required decades of relentless efforts implying hardware and software developments as well as theoretical studies and extensive simulations. Space instruments, as well as ground-based ones, are now producing a steady flow of important results often in conjunction with observatories working at different wavelengths. Multi-messenger astronomy, which combines the electromagnetic channel with gravitational waves and neutrinos, is the newly born discipline to which high-energy gamma-ray detectors provide an essential contribution. Building instruments to continuously cover the gamma-ray sky is, thus, a priority for the astronomical community which is looking forward for the Cherenkov Telescope Array, a new generation ground based gamma-ray observatory designed to monitor, to study and to unveil the mysteries hidden in the very high energy sky.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Source: Chandra mission website and Space Telescope Science Institute

Fig. 2

Credit: Max-Planck-Institut fur Kernphysik, Heidelberg

Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

(Courtesy J. Knodlseder)

Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

Similar content being viewed by others

Notes

  1. The ASTRONET Infrastructure Roadmap is available at https://www.eso.org/public/archives/books/pdfsm/book_0045.pdf.

  2. Science with the Cherenkov Telescope Array. Edited by CTA Consortium. Published by World Scientific Publishing Co. Pte. Ltd., 2019. ISBN#9789813270091 https://www.worldscientific.com/worldscibooks/10.1142/10986.

  3. https://www.swgo.org/SWGOWiki/doku.php.

References

  1. D. Heck, J. Knapp, J.N. Capdevielle, G. Schatz, T. Thouw, Forschungszentrum Karlsruhe Report FZKA 6019 (1998)

  2. D. Heck, T. Pierog, Extensive air shower simulation with CORSIKA: a user’s guide (version 7.7100 from December 17, 2019)

  3. W. Galbraith, J.V. Jelley, Nature 171, 349 (1953)

    ADS  Google Scholar 

  4. T.C. Weekes, Very Hygh-Energy Gamma Ray Astronomy (IoP Publishing, Bristol, 2003)

    Google Scholar 

  5. E. Lorenz, R. Wagner, Eur. Phys. J. H 37(3), 459 (2012)

    Google Scholar 

  6. W.L. Kraushaar, G.W. Clark, G.P. Garmire, R. Borken, P. Higbie, V. Leong, T. Thorsos, Ap. J. 177, 341 (1972)

    ADS  Google Scholar 

  7. G. Kanbach, Rend. Fis. Acc. Lincei 30(Suppl 1), 7 (2019)

    Google Scholar 

  8. C.E. Fichtel et al., Ap. J. 298, 163 (1975)

    ADS  Google Scholar 

  9. G.F. Bignami et al., Space Sci. Instrum. 1, 245 (1975)

    ADS  Google Scholar 

  10. D.J. Thompson, Comptes Rendus Phys. 16, 600 (2015)

    ADS  Google Scholar 

  11. B.N. Swanenburg et al., Ap. J. 243, L69 (1981)

    ADS  Google Scholar 

  12. G.F. Bignami, W. Hermsen, Annu. Rev. Astron. Astrophys. 21, 67 (1983)

    ADS  Google Scholar 

  13. G.F. Bignami, P.A. Caraveo, Annu. Rev. Astron. Astrophys. 34, 331 (1996)

    ADS  Google Scholar 

  14. A.M. Hillas, Proc. 18th I.C.R.C. La Jolla 3, 445 (1985)

    Google Scholar 

  15. A.M. Hillas, Astropart. Phys. 43, 19 (2013)

    ADS  Google Scholar 

  16. T.C. Weekes et al. (Whipple Collaboration), Ap.J 342, 379 (1989)

    ADS  Google Scholar 

  17. A. Konopleko, W. Cui, C. Duke, J.P. Finley, Ap. J. 679, L13 (2008)

    ADS  Google Scholar 

  18. G. Kanbach et al., Space Sci. Rev. 49, 69 (1988)

    ADS  Google Scholar 

  19. R.C. Hartman et al., Ap. J. S 123, 79 (1999)

    ADS  Google Scholar 

  20. D.J. Thompson, in Proceedings of Astrophysics and Space Science Library, vol 304, ed. by K.S. Cheng, G.E. Romero (2004), p. 149

  21. K. Hurley et al., Nature 372, 652 (1994)

    ADS  Google Scholar 

  22. N. Punch et al. (Whipple Collaboration), Nature 358, 477 (1992)

    ADS  Google Scholar 

  23. R. Enomoto et al., Ap. J. 638, 397 (2006)

    ADS  Google Scholar 

  24. W. Hofmann, Proc. 27th I.C.R.C. Hamburg 7, 2785 (2001)

    Google Scholar 

  25. C. Baixeras et al. (MAGIC Collaboration), Nucl. Phys. B 114, 247 (2003)

    Google Scholar 

  26. J. Holder et al. (VERITAS Collaboration), Astropart. Phys. 25, 391 (2006)

    ADS  Google Scholar 

  27. J.R. Garcia et al., in 33th International Cosmic Ray Conference (2014). https://arxiv.org/pdf/1404.4219.pdf

  28. F.A. Aharonian et al. (H.E.S.S. Collaboration), Nature 432, 75 (2004)

    ADS  Google Scholar 

  29. F.A. Aharonian et al. (H.E.S.S. Collaboration), Ap. J. 636, 777 (2006)

    ADS  Google Scholar 

  30. Abdalla et al. (H.E.S.S. Collaboration) Astron. Astr. 612 (2018) A1

  31. F.A. Aharonian et al. (H.E.S.S. Collaboration), Astron. Astrophys. 442, 1 (2005)

    ADS  Google Scholar 

  32. F.A. Aharonian et al. (H.E.S.S. Collaboration), Science 309, 746 (2005)

    ADS  Google Scholar 

  33. J. Albert et al. (MAGIC Collaboration), Science 312, 1771 (2006)

    ADS  Google Scholar 

  34. E. Aliu (MAGIC Collaboration), Science 322, 1221 (2008)

    ADS  Google Scholar 

  35. E. Aliu (VERITAS Collaboration), Science 334, 69 (2011)

    ADS  Google Scholar 

  36. S. Ansoldi et al. (MAGIC Collaboration), Astron. Astrophys. 585, A183 (2016)

    Google Scholar 

  37. J. Albert et al. (MAGIC Collaboration), Science 320, 1752 (2008)

    ADS  Google Scholar 

  38. M.L. Ahnen et al. (MAGIC Collaboration), Ap. J. 815, L23 (2015)

    ADS  Google Scholar 

  39. R. Mirzoyan, On behalf of the MAGIC Collaboration The Astronomer’s Telegram 6349 (2014)

  40. V.A. Acciari et al. (MAGIC Collaboration), M.N.R.A.S. 286, 4233 (2019)

    ADS  Google Scholar 

  41. R. Atkins et al., Ap. J. 608, 680 (2004)

    ADS  Google Scholar 

  42. G. Sinnis, New J. Phys. 11 (2009)

  43. M. Tavani et al., Astron. Astrophys. 502, 005 (2009)

    Google Scholar 

  44. W.B. Atwood et al. (Fermi LAT Collaboration), Ap. J. 697, 1071 (2009)

    ADS  Google Scholar 

  45. C.A. Meegan et al., Ap. J. 702, 791 (2009)

    ADS  Google Scholar 

  46. Abdollahi, S. et al. (Fermi collaboration), Ap. J. S. 247, 33 (2020)

  47. P.A. Caraveo, Annu. Rev. Astron. Astrophys. 52, 211 (2014)

    ADS  Google Scholar 

  48. M. Ajello et al. (Fermi Collaboration), Ap. J. 878, 52 (2019)

    ADS  Google Scholar 

  49. M. Tavani et al., Science 331, 736 (2011)

    ADS  Google Scholar 

  50. A.A. Abdo et al. (Fermi LAT Collaboration), Science 331, 739 (2011)

    ADS  Google Scholar 

  51. A.U. Abeysekara et al. (HAWC Collaboration), Ap. J. 843, 40 (2017)

    ADS  Google Scholar 

  52. V.A. Acciari et al. (MAGIC Collaboration), Nature 575, 455 (2019)

    ADS  Google Scholar 

  53. V.A. Acciari et al. (MAGIC Collaboration), Nature 575, 459 (2019)

    ADS  Google Scholar 

  54. B.P. Abbott (Multi Collaboration), Ap. J. 848, L12 (2017)

    ADS  Google Scholar 

  55. E. Pian et al., Nature 551, 67 (2017)

    ADS  Google Scholar 

  56. M.G. Aartsen et al. (IceCube Collaboration), Science 361, 147 (2018)

    ADS  Google Scholar 

  57. M.G. Aartsen et al. (Multi Collaboration), Science 361, 146 (2018)

    ADS  Google Scholar 

  58. N. Sahakyan, Ap. J. 866, 109 (2018)

    ADS  Google Scholar 

  59. A. De Angelis et al., J. High Energy Astrophys. 19, 1 (2018)

    ADS  Google Scholar 

  60. J.E. McEnery (Amego Collaboration) arXiv:1907.07558v2 (2019)

  61. B.S. Acharya et al. (CTA Consortium), Astropart. Phys. 43, 3 (2013)

    ADS  Google Scholar 

  62. K. Bernloehr et al. (CTA Consortium), Astropart. Phys. 43, 171 (2013)

    ADS  Google Scholar 

  63. A. Acharyya et al. (CTA Consortium), Astropart. Phys. 111, 35 (2019)

    ADS  Google Scholar 

  64. V. Vassiliev, S. Fegan, P. Brousseau, Astropart. Phys. 28, 10 (2007)

    ADS  Google Scholar 

  65. J. Cortina (for the CTA LST project), in 36th International Cosmic Ray Conference. Proceedings of Science (2019), id.653

  66. M. Garczarczyk, in Proceedings of the SPIE, vol 10700 (2018), id. 1070023

  67. C. Adams et al. (pSCT Collaboration), eprint arXiv:1910.00133 (2019)

  68. G. Pareschi, Proc. SPIE 9906, 99065T (2016)

    ADS  Google Scholar 

  69. S. Scuderi, in Proceedings of the SPIE, vol 10700 (2018) id. 107005Z

  70. O. Catalano et al., in Proceedings of the SPIE, vol 10702 (2018) id. 1070237

  71. G. Sottile et al., in Proceedings of the SPIE, vol 9906 (2016) id. 99063D

  72. H. Sol, T. Greenshaw, O. Le Blanc, R. White (for the CTA GCT project), in 35th International Cosmic Ray Conference. Proceedings of Science, vol 301 (2017) id. 822

  73. M. Heller et al., in Conference Gamma 2016 in Heildelberg, AIP Conference Proceedings, vol 1792 (2017) id. 080003

  74. E. Giro et al., Astron. Astrophys. 608, 86 (2017)

    Google Scholar 

  75. Lombardi et al. (ASTRI Collaboration), Astron. Astrophys. 636, A22 (2020)

    Google Scholar 

  76. E. Giro et al., in Proceedings of the SPIE, vol 11119 (2019) id. 111191E

  77. R. Ong (on behalf of the CTA Consortium), in 35th I.C.R.C. (2017). https://pos.sissa.it/301/1071/pdf

  78. X. Bai et al. (LHAASO Collaboration) arXiv:1905.02773 (2019)

  79. S. Aiello et al. (The KM3NeT Collaboration), Astropart. Phys. 111, 100 (2019)

    ADS  Google Scholar 

Download references

Acknowledgements

I would like to thank Angelo Antonelli, Igor Oya and Giovanni Pareschi for their careful reading of the manuscript. An anonymous referee provided very useful comments. Inputs from Federico Ferrini, Jurgen Knodlseder and Salvo Scuderi are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia A. Caraveo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caraveo, P.A. The golden age of high-energy gamma-ray astronomy: the Cherenkov Telescope Array in the multimessenger era. Riv. Nuovo Cim. 43, 281–318 (2020). https://doi.org/10.1007/s40766-020-00006-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40766-020-00006-3

Keywords

Navigation