Skip to main content
Log in

A unique mission: Cassini-Huygens, the Orbiter, the descent Probe and the cruise science

  • Published:
La Rivista del Nuovo Cimento Aims and scope

Summary

The Cassini-Huygens mission has characterized the Solar System exploration scenario for more than 30 years, from when it was conceived until the completion of its long life. Its legacy is an enormous amount of high quality scientific data and astonishing images of the Saturn system and its moons, Titan first. Also, the mission has been the gymnasium where new technologies and procedures have been discussed, developed and after adopted by many other missions. Cassini-Huygens also played a great role in allowing a new generation of scientists and engineers to increase their knowledge and skills, merging the already matured experience of a generation, formed on previous missions as Voyager, with a new generation belonging to many different countries. The international scenario that allowed the realization of the mission is the other distinguishing character of this adventure, led by the partnership of three space agencies, NASA with the Jet Propulsion Laboratory first, the European Space Agency-ESA for Huygens and the Italian Space Agency-ASI. This cooperative environment allowed both ESA and ASI to enter at best in the environment of the deep-space planetary missions and also provided the opportunity for other 15 nations to have their scientist on board and contributing to the mission. A cooperative effort, well guided and harmonized by the Project Science Group, lasted till the very end of the mission when the Cassini Grand Finale was played with the last plunge into the Saturn atmosphere. Hereafter, the mission is described including some details on the technical aspects of the Cassini spacecraft, the Huygens probe, the science instruments part of their payload and the science results are summarized with a special emphasis on the Italian contribution. This paper focuses on the science results in the cruise phase, where radio science experiments testing different aspects of relativistic gravity were performed. In particular, we describe the use of the novel Cassini radio system (based on Ka band frequencies, 32–34 GHz) to test the space components of the metric in the Solar System and a search of low-frequency gravitational waves, with a set of extensive observations in 2001 and 2002. The Cassini radio signal was tracked just prior to the final plunge into Saturn’s atmosphere (15 September 2017) from a new configuration of the Sardinia Radio Telescope called “Sardinia Deep Space Antenna”. The Venus and Jupiter fly-bys offered the opportunity to calibrate the VIMS instrument and to carry out new science observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jean-pierre Lebreton, Claudio Sollazzo, Thierry Blancquaert, Olivier Witasse, Mission Team Huygens, Earl Maize, Dennis Matson, Robert Mitchell, Linda Spilker, Enrico Flamini and Monica Talevi, High ambitions for an outstanding planetary mission: Cassini-Huygens, ESA Bull., 120 (2004) 10.

    ADS  Google Scholar 

  2. Smith R. A., Soderblom L., Beebe R., Boyce J., Briggs G., Bunker A., Collins S. A., Hansen C. J., Johnson T. V., Mitchell J. L., Terrile R. J., Carr M., Cook A. F. II, Cuzzi J., Pollak J. B., Danielson G. E., Ingersoll A., Daves M. E., Hunt G. E., Masursky H., Shoemaker E., Morrisos D., Owen T., Sagan C., Veverka J., Strom R. and Suomi V. E., Encounter with Saturn: Voyager 1 Imaging Science Results, Science, 212 (1981) 163 DOI: https://doi.org/10.1126/science.212.4491.163.

    Article  ADS  Google Scholar 

  3. Kohlhase C. E. and Penzo P. A., Voyager mission description, Space Sci. Rev., 21 (1977) 77.

    Article  ADS  Google Scholar 

  4. Bianchi R., Carusi A., Cerroni P., Coradini A., Coradini M., Federico C., Flamini E., Fulchignoni M., Magni G., Poscolieri M. and Valsecchi G. B., Planetology in Rome 1980, Reports of planetary geology program, 1980.

  5. Lebreton P. and Matson D. L., The Huygens Probe: Science, Payload and Mission Overview, Huygens: Science, Payload and Mission, Proceedings of an ESA conference, edited by Wilson A. (1997), ESASP11775L1997.

  6. Cantelli F. P., Lanini A. and Morelli G., Quality Management and Science Concurrence: Lessons Learnt After VIMS and HASI Instruments for the Casini Mission, Product Assurance Symposium and Software Product Assurance Workshop, Proceedings, edited by Perry Michael EAS SP-377, European Space Agency, 1996, 1996ESASP.377..127C.

  7. Draper R., The Mariner Mark II program, 22nd Aerospace Sciences Meeting, Aerospace Sciences Meetings, https://doi.org/10.2514/6.1984-2141984.

  8. Leeds M., Eberhardt R. and Berry R., Development of the Cassini spacecraft propulsion subsystem, 32nd Joint Propulsion Conference and Exhibit, Joint Propulsion Conferences, doi.https://doi.org/10.2514/6.1996-2864.

  9. Mizzoni R., The Cassini High Gain Antenna Subsystem, in Spaceborn Antennas for Space Exploration, JPL Deep Space Communication and Navigation series, edited by Imbriale W. A. (J. Wiley&Sons Ltd Interscience Ed. USA) 2006, chapt. 6.

    Google Scholar 

  10. Roederer A. G., Historical Overview of the Development of Space Antennas, in Space Antenna Handbook, edited by Imbriale W. A., Gao S. and Boccia L., first edition (John Wiley & Sons) 2012, chapt. 7, pp. 269–271.

  11. Mizzoni R., The Cassini High Gain Antenna: A survey on electrical requirements, design and performance (IEEE Seminar on Spacecraft Antennas, London) 1994.

    Google Scholar 

  12. Mizzoni R. et al., Recent Developments on Satellite antennas at Alenia Spazio, 25th Antenna Workshop on satellite Antenna Technology, 18–20 september 2002, ESTEC, Noordwijk, The Netherlands.

  13. Mahadevan K., Ghosh S., Mizzoni R. and Martirano G., Precision analysis and design of a triple band feed for the High Gain Antenna of Cassini deep space mission to Saturn, 8th Journèes Internationales de Nice sur les Antennes (JINA) Nice, November, 1994.

  14. Flamini E. and Somma R., Science & Technology: A Synergic Cooperation. The Italian Experience in the Cassini Mission, Earth Moon Planet, 96 (2005) 101 doi.https://doi.org/10.1007/s11038-005-9059-1.

    Article  ADS  Google Scholar 

  15. Russell C. T., The Cassini-Huygens Mission: Volume 1: Overview, Objectives and Huygens (Springer Books) 2013.

  16. Brown R. H. et al., Space Sci. Rev., 115 (2007) 111 DOI: https://doi.org/10.1007/s11214-004-1453-x.

    Article  ADS  Google Scholar 

  17. Reininger F. et al., Proc. SPIE, 2198 (1994) 239.

    Article  ADS  Google Scholar 

  18. Capaccion F. et al., Planetary Space Sci., 46 (1998) 1263.

    Article  ADS  Google Scholar 

  19. Baines K. H. B. et al., Icarus, 148 (2000) 307 DOI: https://doi.org/10.1006/icar.2000.6519.

    Article  ADS  Google Scholar 

  20. Carlson R. W. et al., Science, 253 (1991) 1541.

    Article  ADS  Google Scholar 

  21. Clark R. N. et al., Science, 326 (2009) 562.

    Article  ADS  Google Scholar 

  22. Coradini A. et al., Planet. Space Sci., 52 (2004) 661 DOI: https://doi.org/10.1016/j.pss.2003.11.005.

    Article  ADS  Google Scholar 

  23. Bellucci G. et al., Icarus, 172 (2004) 141 DOI: https://doi.org/10.1016/j.icarus.2004.05.012.

    Article  ADS  Google Scholar 

  24. Cruikshank D. P. et al., Icarus, 205 (2010) 516 DOI: https://doi.org/10.1016/j.icarus.2009.05.035.

    Article  ADS  Google Scholar 

  25. McCord T. B. C. et al., Icarus, 172 (2004) 104 DOI: https://doi.org/10.1016/j.icarus.2004.07.001.

    Article  ADS  Google Scholar 

  26. Tyler G. L., Eshleman V. R., Anderson J. D., Levy G. S., Lindal G. F., Wood G. E. and Croft T. A., Radio science investigations of the Saturn system with Voyager 1: Preliminary results, Science, 212 (1981) 201.

    Article  ADS  Google Scholar 

  27. Lunine J. I., Stevenson D. J. and Yung Y. L., Ethane ocean on Titan, Science, 222 (1983) 1229

    Article  ADS  Google Scholar 

  28. Elachi E. et al., Cassini Radar Views the Surface of Titan, Science, 308 (2005) 970.

    Article  ADS  Google Scholar 

  29. Lorenz R. D., Wall S., Radebaugh J., Boubin G., Reffet E., Janssen M., Stofan E., Lopes R., Kirk R., Elachi C. and Lunine J., The sand seas of Titan: Cassini RADAR observations of longitudinal dunes, Science, 312 (2006) 724.

    Article  ADS  Google Scholar 

  30. Radebaugh J., Dunes on Saturn’s moon Titan at the end of the Cassini Equinox Mission, Aeolian Res., 11 (2013) 23.

    Article  ADS  Google Scholar 

  31. Radebaugh J., Lorenz R., Kirk R., Lunine J., Stofan E., Lopes R., Wall S. and the Cassini Radar Team, Mountains on Titan observed by Cassini Radar, Icarus, 192 (2007) 77 DOI: https://doi.org/10.1016/j.icarus.2007.06.020.

    Article  ADS  Google Scholar 

  32. Mitri G., Bland M. T., Showman A. P., Radebaugh J., Stiles B., Lopes R. M. C., Lunine J. I. and Pappalardo R. T., Mountains on Titan: Modeling and Observations, J. Geophys. Res., 115 (2010) E10002 DOI: https://doi.org/10.1029/2010JE003592.

    Article  ADS  Google Scholar 

  33. Elachi C., Wall S., Janssen M., Stofan E., Lopes R., Kirk R. et al., Titan Radar Mapper observations from Cassini’s T 3 fly-by, Nature, 441 (2006) 709.

    Article  ADS  Google Scholar 

  34. Lorenz R. D., Wood C. A., Lunine J. I., Wall S. D., Lopes R. M., Mitchell K. L., Paganelli F., Anderson Y. Z., Wye L., Tsai C., Zebker H. and Stofan E. R., Titan’s young surface: Initial impact crater survey by Cassini RADAR and model comparison, Geophys. Res. Lett., 34 (2007) L07204.

    Article  ADS  Google Scholar 

  35. Wood C. A., Lorenz R., Kirk R., Lopes R., Mitchell K., Stofan E. and Cassini Radar Team, Impact craters on Titan, Icarus, 206 (2010) 334.

    Article  ADS  Google Scholar 

  36. Stofan E. R., Elachi C., Lunine J. I., Lorenz R. D., Stiles B., Mitchell K. L., Ostro S., Soderblom L., Wood C., Zebker H., Wall S., Janssen M., Kirk R., Lopes R., Paganelli F., Radebaugh J., Wye L., Anderson Y., Allison M., Boehmer R., Callahan P., Encrenaz P., Flamini E., Francescetti G., Gim Y., Hamilton G., Hensley S., Johnson W. T. K., Kelleher K., Muhleman D., Paillou P., Picardi G., Posa F., Roth L., Seu R., Shaffer S., Vetrella S. and West R., The lakes of Titan, Nature, 445 (2007) 61 DOI: https://doi.org/10.1038/nature05438.

    Article  ADS  Google Scholar 

  37. Lopes R., Wall S., Elachi C., Birch S., Corlies P., Coustenis A., Hayes A., Hofgartner J., Janssen M., Kirk R., Le Gall A., Lorenz R., Lunine J., Malaska M., Mastrogiuseppe M., Mitri G., Neish K., Notarnicola C., Paganelli F., Paillou P., Poggiali V., Radebaugh J., Rodriguez S., Schoenfeld A., Soderblom J., Solomonidou A., Stofan E., Stiles B., Tosi F., Turtle E., West R., Wood C., Zebker H., Barnes J., Casarano D., Encrenaz P., Farr T., Grima C., Hemingway D., Karatekin O., Lucas A., Mitchell K. L., Ori G., Orosei R., Ries P., Riccio D., Soderblom L. and Zhang Z., Titan as Revealed by the Cassini RADAR, Space Sci. Rev., 215 (2019) 33.

    Article  ADS  Google Scholar 

  38. Mitri G., Showman A. P., Lunine J. I. and Lorenz R. D., Hydrocarbon lakes on Titan, Icarus, 186 (2007) 385.

    Article  ADS  Google Scholar 

  39. Jaumann R., Brown R. H., Stephan K., Barnes J. W., Soderblom L. A., Sotin C., Le Mouélic S., Clark R. N., Soderblom J., Buratti B. J. et al., Fluvial erosion and post-erosional processes on Titan, Icarus, 197 (2008) 526.

    Article  ADS  Google Scholar 

  40. Elachi C., Allison M. D., Borganelli L., Encrenaz P., Im E., Janssen M. A., Johnson W. T. K., Kirk R. L., Lorenz R. D., Lunine J. I., Muhleman D. O., Ostro S. J., Picardi G., Posa F., Rapley C. G., Roth L. E., Seu S., Soderblom L. A., Vetrella S., Wall S. D., Wood C. A. and Zebker H. A., Radar: The Cassini Titan Radar Mapper, Space Sci. Rev., 115 (2004) 71.

    Article  ADS  Google Scholar 

  41. Lopes R. M., Mitchell K. L., Wall S. D., Mitri G., Janssen M., Ostro S. et al., The lakes and seas of Titan, EOS, Trans. Am. Geophys. Union, 88 (2007) 569.

    Article  ADS  Google Scholar 

  42. Elachi E. et al., Cassini Radar Views the Surface of Titan, Science, 308 (2005) 970.

    Article  ADS  Google Scholar 

  43. Bertotti B., Comoretto G. and Iess L., Astron. Astrophys., 269 (1993) 608.

    ADS  Google Scholar 

  44. Tortora P., Iess L., Bordi J. J., Ekelund J. E. and Roth D. C., J. Guidance, Control Dyn., 27 (2004) 251.

    Article  ADS  Google Scholar 

  45. Asmar S. W., Armstrong J. W., Iess L. and Tortora P., Radio Sci., 40 (2005) 1.

    Article  Google Scholar 

  46. DSN Document No. 820-5, Rev. D Issue Date: May 8, 2009 JPL D-19002.

  47. Asmar S. W. et al., Cassini Radio Science User’s Guide, CL#14-3853 (2014).

  48. Kliore A. J. et al., Space Sci. Rev., 115 (2004) 1–70G.

    Article  ADS  Google Scholar 

  49. Armstrong J. W., Living Rev. Relativ., 9 (2006) 1.

    Article  ADS  Google Scholar 

  50. Bender P. L. et al. (the LISA Study Team), LISA, Laser Interferometer Space Antenna for the Detection and Observations of Gravitational Waves, Pre-Phase A report, MPQ-233, (Max-Planck-Institut fur Quantenoptik, Garching) 1998.

  51. Abbott B. P. et al., Phys. Rev. Lett., 116 (2016) 061102.

    Article  ADS  MathSciNet  Google Scholar 

  52. Armstrong J. W., Iess L., Tortora P. and Bertotti B., Astrophys. J., 599 (2003) 806.

    Article  ADS  Google Scholar 

  53. Estabrook F. B. and Wahlquist H. D., Gen. Relativ. Gravit., 6 (1975) 439.

    Article  ADS  Google Scholar 

  54. Bertotti B., Vecchio A. and Iess L., Phys. Rev. D, 59 (1999) 082001.

    Article  ADS  Google Scholar 

  55. Wahlquist H. D., Gen. Relativ. Gravit., 19 (1987) 1101.

    Article  ADS  Google Scholar 

  56. Hellings R. W., Callahan P. S., Anderson J. D. and Moffet A. T., Phys. Rev. D, 23 (1981) 844.

    Article  ADS  Google Scholar 

  57. Anderson J. D., Armstrong J. W., Estabrook F. B., Hellings R. W., Lau E. K. and Wahlquist H. D., Nature, 308 (1984) 158.

    Article  ADS  Google Scholar 

  58. Anderson J. D., Armstrong J. W. and Lau E. K., Astrophys J., 408 (1994) 287.

    Article  ADS  Google Scholar 

  59. Anderson J. D. and Mashhoon B., Astrophys J., 290 (1985) 445.

    Article  ADS  Google Scholar 

  60. Armstrong J. W., Estabrook F. B. and Wahlquist H. D., Astrophys J., 318 (1987) 536.

    Article  ADS  Google Scholar 

  61. Bertotti B., Ambrosini R., Asmar S. W., Brenkle J. P., Comoretto G., Giampieri G., Iess L., Messeri A. and Wahlquist H. D., Astron. Astrophys. Suppl. 92 (1992) 431.

    ADS  Google Scholar 

  62. Bertotti B., Ambrosini R., Armstrong J. W., Asmar S. W., Comoretto G., Giampieri G., Iess L., Koyama Y., Messeri A., Vecchio A. and Wahlquist H. D., Astron. Astrophys., 296 (1995) 13.

    ADS  Google Scholar 

  63. Iess L. and Armstrong J. W., in Gravitational Waves: Sources and Detectors, edited by Ciufolini I. and Fidecaro F. (World Scientific, Singapore) 1997, p. 323.

  64. Anderson J. D., Armstrong J. W., Campbell J. K., Estabrook F. B., Krisher T. P. and Lau E. K., Space Sci. Rev., 60 (1992) 610.

    Article  Google Scholar 

  65. Armstrong J. W., Radio Sci., 33 (1998) 1727.

    Article  ADS  Google Scholar 

  66. Bertotti B., Letter to the Cassini Project Office, 19 July 1991.

  67. Bertotti B., Iess L. and Tortora P., Nature, 425 (2003) 374.

    Article  ADS  Google Scholar 

  68. Will C. M., The confrontation between general relativity and experiment, Living Rev. Relativ., 17 (2014) 4.

    Article  ADS  MATH  Google Scholar 

  69. Shapiro I. I., Phys. Rev. Lett., 13 (1964) 789.

    Article  ADS  MathSciNet  Google Scholar 

  70. Moyer T. D., Formulation for observed and computed values of Deep Space Network data types for navigation, Vol. 3 (John Wiley & Sons) 2005.

  71. Bertotti B., Ashby N. and Iess L., Class. Quantum Grav., 25 (2008) 045013.

    Article  ADS  Google Scholar 

  72. Reasenberg R. D. et al., Astrophys. J., 234 (1979) L219.

    Article  ADS  Google Scholar 

  73. https://www.asi.it/it/news/il-sardinia-deep-space-antenna-e-il-grand-finale.

  74. Flamini E. et al., Deep Space Communication Service Provided by Sardinia Deep Space Antenna — SDSA: Program Status and Cababilities, IAC, 68th International Astronautical Congress, Adelaide, Australia, Sept. 2017.

  75. http://asitv.it/media/vod/v/4752/video/deep-space-dialogo-con-le-sonde.

  76. Bolli P. et al., Sardinia Radio Telescope: General Description, Technical Commissioning and First Light, J. Astron. Instrum., 4 (2015) 155008.

    Article  Google Scholar 

  77. Prandoni I. et al., The Sardinia Radio Telescope: From a Technological Project to a Radio Observatory, Astron. Astrophys., 608 (2017) A40 DOI: https://doi.org/10.1051/0004-6361/201630243.

    Article  Google Scholar 

  78. Taylor J., Sakamoto L. and Wong C. J., Cassini Orbiter/Huygens Probe Telecommunications, DESCANSO Design and Performance Summary Series, Article 3 (2002).

  79. Mascolo G., Contu S., Mizzoni R. and Borchi S., A double dichroic subreflector reflective at X, Ku, and Ka bands and transparent at S band, 8th Journèes Internationales de Nice sur les Antennes (JINA) Nice, November, 1994.

  80. Lebreton J. P. and Matson D. L., The Huygens Probe: Science, Payload and Mission Overview, Huygens: Science, Payload and Mission, Proceedings of ESA conference, edited by Wilson A. (1997), ESASP11775L1997.

  81. Fulchignoni M. et al., The Characterisation of Titan’s Atmospheric Physical Properties by the Huygens Atmospheric Structure Instrument (Hasi), Space Sci. Rev., 104 (2002) 395 DOI: https://doi.org/10.1023/A:1023688607077.

    Article  ADS  Google Scholar 

  82. Fulchignoni M., Ferri F., Angrilli F., Bar-Nun M., Barucci A., Bianchini G., Borucki W., Coradini M., Coustenis A., Falkner P., Flamini E., Grard R., Hamelin M., Harri A. M., Leppelmeier G. W., Lopez-Moreno J., Mcdonnell J. A. M., Mckay C. P., Neubauer F. H., Pedersen A., Picardi G., Pirronello V., Rodrigo R., Schwingenschuh K., Seiff A., Svedhem H., Vanzani V. and Zarnecki J., The Characterisation of Titan’s Atmospheric Physical Properties by the Huygens Atmospheric Structure Instrument (Hasi), in The Cassini-Huygens Mission: Overview, Objectives and Huygens Instrumentation, Vol. 1 (Springer, Dordrecht) 2005, pp. 395–431 DOI: https://doi.org/10.1007/978-94-017-3251-211.

    Google Scholar 

  83. Fulchignoni M., Aboudan A., Angrilli F., Antonello M., Bastianello S., Bettanini C., Bianchini G., Colombatti G., Ferri F., Flamini E., Gaborit V., Ghafoor N., Hathi B., Harri A.-M., Lehto A., Lion Stoppato P. F., Patel M. R. and Zarnecki J. C., A stratospheric balloon experiment to test the Huygens atmospheric structure instrument (HASI), Planet. Space Sci., 52 (2004) 867.

    Article  ADS  Google Scholar 

  84. Ruffino G. et al., The temperature sensor on the Huygens probe for the Cassini mission: Design, manifacture, calibration and tests of the laboratory prototype, Planet. Space Sci., 44 (1996) 1149.

    Article  ADS  Google Scholar 

  85. Harri A.-M. et al., Scientific objectives and implementation of the Pressure Profile Instrument (PPI/HASI) for the Huygens spacecraft, Planet. Space Sci., 46 (1998) 1383.

    Article  ADS  Google Scholar 

  86. Grard R. et al., An experimental investigation of atmospheric electricity and lightning activity to be performed during the descent of the Huygens probe onto Titan, J. Atmos. Terr. Phys., 57 (1995) 575.

    Article  ADS  Google Scholar 

  87. Lebreton J.-P. and Matson D. L., The Huygens probe: science, payload and mission overview, Space Sci. Rev., 104 (2002) 59.

    Article  ADS  Google Scholar 

  88. Zarnecki J. C. et al., In-flight Performances of the Servo Accelerometer and Implication for Results at Titan, Proceedings of the International Workshop “Planetary Probe Atmospheric Entry and Descent Trajectory Analysis and Science” Lisbon, Portugal. 6–9 October 2003. ESA SP-544 (2004).

  89. Gurnett D. A., Zarka P., Manning R., Kurth W. S., Hospodarsky G. B., Averkamp T. F., Kaiser M. L. and Farrell W. M., Non-detection at Venus of high-frequency radio signals characteristic of terrestrial lightning, Nature, 409 (2001) 313.

    Article  ADS  Google Scholar 

  90. Krimigis S. M., Mitchell D. G., Hamilton D. H., Livi S. and Dandouras J., Preliminary Results from MIMI Observations during Cassini’s Venus-2 Flyby on June 24, 1999, AAS Division for Planetary Sciences Meeting Abstracts #31 31, 64.04.

  91. Baines K. H., Bellucci G., Bibring J. P., Brown R. H., Buratti B. J., Bussoletti E. et al., Detection of sub-micron radiation from the surface of Venus by Cassini/VIMS, Icarus, 148 (2000) 307.

    Article  ADS  Google Scholar 

  92. Hubert B., Gérard J. C., Gustin J., Shematovich V. I., Bisikalo D. V., Stewart A. I. and Gladstone G. R., UVIS observations of the FUV OI and CO 4P Venus dayglow during the Cassini flyby, Icarus, 207 (2010) 549.

    Article  ADS  Google Scholar 

  93. Rymer A. M., Coates A. J., Svenes K., Abel G. A., Linder D. R., Narheim B. et al., Cassini plasma spectrometer electron spectrometer measurements during the Earth swing by on August 18, 1999, J. Geophys. Res.: Space Phys., 106 (2001) 30177.

    Article  ADS  Google Scholar 

  94. Lagg A., Krupp N., Livi S., Woch J., Krimigis S. M. and Dougherty M. K., Energetic particle measurements during the Earth swing-by of the Cassini spacecraft in August 1999, J. Geophys. Res., 106 (2001) 30209.

    Article  ADS  Google Scholar 

  95. Burton M. E., Buratti B., Matson D. L. and Lebreton J. P., The Cassini-Huygens Venus and Earth flybys: An overview of operations and results, J. Geophys. Res., 106 (2001) 30099.

    Article  ADS  Google Scholar 

  96. Southwood D. J. et al., Magnetometer measurements from the Cassini Earth swing-by, J. Geophys. Res., 106 (2001) 30109.

    Article  ADS  Google Scholar 

  97. Brown R. H. et al., The Cassini Visual And Infrared Mapping Spectrometer (VIMS) Investigation, Space Sci. Rev., 115 (2004) 111.

    Article  ADS  Google Scholar 

  98. Porco C. C., West R. A., McEwen A., Del Genio A. D., Ingersoll A. P., Thomas P. et al., Cassini imaging of Jupiter’s atmosphere, satellites, and rings, Science, 299 (2003) 1541.

    Article  ADS  Google Scholar 

  99. Simon-Miller A. A., Conrath B. J., Gierasch P. J., Orton G. S., Achterberg R. K., Flasar F. M. and Fisher B. M., Jupiter’s atmospheric temperatures: From Voyager IRIS to Cassini CIRS, Icarus, 180 (2006) 98.

    Article  ADS  Google Scholar 

  100. Krupp N., Woch J., Lagg A., Livi S., Mitchell D. G., Krimigis S. M. et al., Energetic particle observations in the vicinity of Jupiter: Cassini MIMI/LEMMS results, J. Geophys. Res.: Space Phys., 109 (2004) 2156.

    Article  Google Scholar 

  101. Altobelli N., Kempf S., Landgraf M., Srama R., Dikarev V., Kruger H., Moragas-Klostermeyer G. and Grun E., Cassini between Venus and Earth: Detection of interstellar dust, J. Geophys. Res.: Space Phys., 108 (2003) 8032.

    Article  ADS  Google Scholar 

  102. Srama R. et al., The Cassini Cosmic Dust Analyzer, Space Sci. Rev., 114 (2004) 465.

    Article  ADS  Google Scholar 

  103. Hillier J. K., Green S. F., McBride N., Altobelli N., Postberg F., Kempf S., Schwanethal J., Srama R., McDonnell J. A. M. and Grun E., Interplanetary dust detected by the Cassini CDA Chemical Analyser, Icarus, 190 (2007) 643.

    Article  ADS  Google Scholar 

  104. Krimigis S. M. et al., Dynamics of Saturn’s Magnetosphere from MIMI During Cassini’s Orbital Insertion, Science, 307 (2005) 1270.

    Article  ADS  Google Scholar 

  105. Porco C. C., Baker E., Barbara J., Beurle K., Brahic A., Burns J. A. et al. Imaging of Titan from the Cassini spacecraft, Nature, 434 (2005) 159.

    Article  ADS  Google Scholar 

  106. Porco C. C., Baker E., Barbara J., Beurle K., Brahic A., Burns J. A. et al. Cassini imaging science: Initial results on Phoebe and Iapetus, Science, 307 (2005) 1237.

    Article  ADS  Google Scholar 

  107. Lunine J. I., Stevenson D. J. and Yung Y. L., Ethane ocean on Titan, Science, 222 (1983) 1229.

    Article  ADS  Google Scholar 

  108. Lunine J. I., Does Titan have an ocean? A review of current understanding of Titan’s surface, Rev. Geophys., 31 (1993) 133.

    Article  ADS  Google Scholar 

  109. Bird M. K. et al., The vertical profile of winds on Titan, Nature, 438 (2005) 800.

    Article  ADS  Google Scholar 

  110. Tomasko M. G. et al., Rain, winds and haze during the Huygens probe’s descent to Titan’s surface, Nature, 438 (2005) 765.

    Article  ADS  Google Scholar 

  111. Lorenz R. D., Thermal interactions of the Huygens probe with the Titan environment: Constraint on near-surface wind, Icarus, 182 (2006) 559.

    Article  ADS  Google Scholar 

  112. Bird M. K., Allison M., Asmar S. W., Atkinson D. H., Avruch I. M., Dutta-Roy R. et al., The vertical profile of winds on Titan, Nature, 438 (2005) 800.

    Article  ADS  Google Scholar 

  113. Niemann H. B. et al., The abundances of constituents of Titan’s atmosphere from the GCMS instrument on the Huygens probe, Nature, 438 (2005) 779.

    Article  ADS  Google Scholar 

  114. Baines K. H., Drossart P., Lopez-Valverde M. A., Atreya S. K., Sotin C., Momary T. W. et al., On the discovery of CO nighttime emissions on Titan by Cassini/VIMS: Derived stratospheric abundances and geological implications, Planetary Space Sci., 54 (2006) 1552.

    Article  ADS  Google Scholar 

  115. Mccord T., Hayne P., Combe J. and Hansen G., The Case for CO2 on Titan From the VIMS Reflectance Spectra, AGU Fall Meeting Abstracts (2007).

  116. Niemann H. B., Atreya S. K., Demick J. E., Gautier D., Haberman J. A., Harpold D. N., Kasprzak W. T., Lunine J. I., Owen T. C. and Raulin F., Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment, J. Geophys. Res. (Planets), 115 (2010) E12006.

    Article  ADS  Google Scholar 

  117. Yelle R. V., Cui J. and Muller-Wodarg I. C. F., Methane escape from Titan’s atmosphere, J. Geophys. Res. (Planets), 113 (2008) E10003.

    Article  ADS  Google Scholar 

  118. Tomasko M. G., Archinal B., Becker T., Bézard B., Bushroe M., Combes M. et al., Results from the descent imager/spectral radiometer (DISR) instrument on the Huygens probe of Titan, Nature, 438 (2005) 765.

    Article  ADS  Google Scholar 

  119. Fulchignoni M. et al., In situ measurements of the physical characteristics of Titan’s environment, Nature, 438 (2005) 785.

    Article  ADS  Google Scholar 

  120. Lunine J. and Atreya S., The methane cycle on Titan, Nat. Geosci., 1 (2008) 335.

    Article  ADS  Google Scholar 

  121. Grard R., Hamelin M., López-Moreno J. J., Schwingenschuh K., Jernej I., Molina-Cuberos G. J. et al., Electric properties and related physical characteristics of the atmosphere and surface of Titan, Planetary Space Sci., 54 (2006) 1124.

    Article  ADS  Google Scholar 

  122. Béghin C., Simões F., Krasnoselskikh V., Schwingenschuh K., Berthelier J. J., Besser B. P. et al., A Schumann-like resonance on Titan driven by Saturn’s magnetosphere possibly revealed by the Huygens Probe, Icarus, 191 (2007) 251.

    Article  ADS  Google Scholar 

  123. Béghin C. et al., New insights on Titan’s plasma-driven Schumann resonance inferred from Huygens and Cassini data, Planet. Space Sci., 57 (2009) 1872.

    Article  ADS  Google Scholar 

  124. Béghin C., Randriamboarison O., Hamelin M., Karkoschka E., Sotin C., Whitten R. C. et al., Analytic theory of Titan’s Schumann resonance: Constraints on ionospheric conductivity and buried water ocean, Icarus, 218 (2012) 1028.

    Article  ADS  Google Scholar 

  125. Simões F. et al., A new numerical model for the simulation of ELF wave propagation and the computation of eigenmodes in the atmosphere of Titan: Did Huygens observe any Schumann Resonance?, Planet. Space Sci., 55 (2007) 1978.

    Article  ADS  Google Scholar 

  126. Lopes R. M. C., Malaska M. J., Solomonidou A., LeGall A., Janssen M. A., Neish C., Turtle E. P., Birch S. P. D., Hayes A. G., Radebaugh J., Coustenis A., Schoenfeld A., Stiles B. W., Kirk R. L., Mitchell K. L., Stofan E. R., Lawrence K. J. and the Cassini RADAR Team, Distribution, and Origin of Titan’s Undifferentiated Plains (“Blandlands”), Icarus, 270 (2016) 162.

    Article  ADS  Google Scholar 

  127. Lopes R. M., Kirk R. L., Mitchell K. L., LeGall A., Barnes J. W., Hayes A. et al., Cryovolcanism on Titan: New results from Cassini RADAR and VIMS, J. Geophys. Res. Planets, 118 (2013) 416.

    Article  ADS  Google Scholar 

  128. Jaumann R., Kirk R. L., Lorenz R. D., Lopes R. M., Stofan E., Turtle E. P. et al., Geology and surface processes on Titan, in Titan from Cassini-Huygens (Springer, Dordrecht) 2009, pp. 75–140.

    Chapter  Google Scholar 

  129. Neish C. D., Barnes J. W., Sotin C., Mackenzie S., Soderblom J. M., Le Mouélic S. et al., Spectral properties of Titan’s impact craters imply chemical weathering of its surface, Geophys. Res. Lett., 42 (2015) 3746.

    Article  ADS  Google Scholar 

  130. Neish C. D., Kirk R. L., Lorenz R. D., Bray V. J., Schenk P., Stiles B. W. et al., Crater topography on Titan: Implications for landscape evolution, Icarus, 223 (2013) 82.

    Article  ADS  Google Scholar 

  131. Zahnle K., Schenk P., Levison H. and Dones L., Cratering rates in the outer Solar System, Icarus, 163 (2003) 263.

    Article  ADS  Google Scholar 

  132. Korycansky D. G. and Zahnle K. J., Modeling crater populations on Venus and Titan, Planetary Space Sci., 53 (2005) 695.

    Article  ADS  Google Scholar 

  133. Iess L., Rappaport N. J., Jacobson R. A., Racioppa P., Stevenson D. J., Tortora P. et al., Gravity field, shape, and moment of inertia of Titan, Science, 327 (2010) 1367.

    Article  ADS  Google Scholar 

  134. Iess L., Jacobson R. A., Ducci M., Stevenson D. J., Lunine J. I., Armstrong J. W. et al., The tides of Titan, Science, 337 (2012) 457.

    Article  ADS  Google Scholar 

  135. Zebker H. A., Stiles B., Hensley S., Lorenz R., Kirk R. L. and Lunine J., Size and shape of Saturn’s moon Titan, Science, 324 (2009) 921.

    Article  ADS  Google Scholar 

  136. Mitri G., Meriggiola R., Hayes A., Lefevre A., Tobie G., Genova A. et al. Shape, topography, gravity anomalies and tidal deformation of Titan, Icarus, 236 (2014) 169.

    Article  ADS  Google Scholar 

  137. Wei H. Y., Russell C. T., Zhang T. L. et al., Comparison study of magnetic flux ropes in the ionospheres of Venus, Mars and Titan, Icarus, 206 (2010) 174.

    Article  ADS  Google Scholar 

  138. Stiles B. W., Hensley S., Gim Y., Bates D. M., Kirk R. L., Hayes A. et al. Determining Titan surface topography from Cassini SAR data, Icarus, 202 (2009) 584.

    Article  ADS  Google Scholar 

  139. Sotin C., Mitri G., Rappaport N., Schubert G. and Stevenson D., Titan’s Interior Structure, in Titan from Cassini-Huygens, edited by Brown R. H., Lebreton J. P. and Waite J. H. (Springer, Dordrecht) 2009.

    Google Scholar 

  140. Meriggiola R., Iess L., Stiles B. W., Lunine J. I. and Mitri G., The rotational dynamics of Titan from Cassini RADAR images, Icarus, 275 (2016) 183.

    Article  ADS  Google Scholar 

  141. Tobie G., Lunine J. I. and Sotin C., Episodic outgassing as the origin of atmospheric methane on Titan, Nature, 440 (2006) 61.

    Article  ADS  Google Scholar 

  142. Mitri G., Showman A. P., Lunine J. I. and Lopes R. M., Resurfacing of Titan by ammonia-water cryomagma, Icarus, 196 (2008) 216.

    Article  ADS  Google Scholar 

  143. De Kok R., Irwin P. G. J., Teanby N. A., Lellouch E., Bézard B., Vinatier S. et al., Oxygen compounds in Titan’s stratosphere as observed by Cassini CIRS, Icarus, 186 (2007) 354.

    Article  ADS  Google Scholar 

  144. Waite J. H., Niemann H., Yelle R. V., Kasprzak W. T., Cravens T. E., Luhmann J. G. et al., Ion neutral mass spectrometer results from the first flyby of Titan, Science, 308 (2005) 982.

    Article  ADS  Google Scholar 

  145. Waite J. H., Glein C. R., Perryman R. S., Teolis B. D., Magee B. A., Miller G. et al., Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes, Science, 356 (2017) 155.

    Article  ADS  Google Scholar 

  146. Coustenis A., What Cassini-Huygens has revealed about Titan, Astron. Geophys., 48 (2007) 2.

    Article  Google Scholar 

  147. Israël G., Szopa C., Raulin F., Cabane M., Niemann H. B., Atreya S. K. et al., Complex organic matter in Titan’s atmospheric aerosols from in situ pyrolysis and analysis, Nature, 438 (2005) 796.

    Article  ADS  Google Scholar 

  148. Bézard B., The methane mole fraction in Titan’s stratosphere from DISR measurements during the Huygens probe’s descent, Icarus, 242 (2014) 64.

    Article  ADS  Google Scholar 

  149. Rodriguez S. et al., Global circulation as the main source of cloud activity on Titan, Nature, 459 (2009) 678.

    Article  ADS  Google Scholar 

  150. Lorenz R. D. et al., Titan’s inventory of organic surface materials, Geophys. Res. Lett., 35 (2008) L02206.

    Article  ADS  Google Scholar 

  151. Tobie G., Gautier D. and Hersant F., Titan’s bulk composition constrained by Cassini-Huygens: implication for internal outgassing, Astrophys. J., 752 (2012) 125.

    Article  ADS  Google Scholar 

  152. Artemieva N. and Lunine J., Impact cratering on Titan II. Global melt, escaping ejecta, and aqueous alteration of surface organics, Icarus, 175 (2005) 522.

    Article  ADS  Google Scholar 

  153. O’Brien D. P., Lorenz R. D. and Lunine J. I., Numerical calculations of the longevity of impact oases on Titan, Icarus, 173 (2005) 243.

    Article  ADS  Google Scholar 

  154. Jennings D. E., Flasar F. M., Kunde V. G., Samuelson R. E., Pearl J. C., Nixon C. A. et al., Titan’s surface brightness temperatures, Astrophys. J. Lett., 691 (2009) L103.

    Article  ADS  Google Scholar 

  155. Yung Y. L., Allen M. and Pinto J. P., Photochemistry of the atmosphere of Titan — Comparison between model and observations, Astrophys. J. Suppl. Ser., 55 (1984) 465.

    Article  ADS  Google Scholar 

  156. Dougherty M. K., Khurana K. K., Neubauer F. M., Russell C. T., Saur J., Leisner J. S. and Burton M. E., Identification of a dynamic atmosphere at Enceladus with the Cassini magnetometer, Science, 311 (2006) 1406.

    Article  ADS  Google Scholar 

  157. Porco C. C., Helfenstein P., Thomas P. C., Ingersoll A. P., Wisdom J., West R. et al., Cassini observes the active south pole of Enceladus, Science, 311 (2006) 1393.

    Article  ADS  Google Scholar 

  158. Spahn F., Schmidt J., Albers N., Hörning M., Makuch M., Seiß M. et al., Cassini dust measurements at Enceladus and implications for the origin of the E ring, Science, 311 (2006) 1416.

    Article  ADS  Google Scholar 

  159. Porco C., DiNino D. and Nimmo F., How the geysers, tidal stresses, and thermal emission across the south polar terrain of Enceladus are related, Astron. J., 148 (2014) 45.

    Article  ADS  Google Scholar 

  160. Postberg F., Kempf S., Schmidt J., Brilliantov N., Beinsen A., Abel B. et al., Sodium salts in E-ring ice grains from an ocean below the surface of Enceladus, Nature, 459 (2009) 1098.

    Article  ADS  Google Scholar 

  161. Postberg F., Schmidt J., Hillier J., Kempf S. and Srama R., A salt-water reservoir as the source of a compositionally stratified plume on Enceladus, Nature, 474 (2011) 620.

    Article  ADS  Google Scholar 

  162. Hsu H. W., Postberg F., Sekine Y., Shibuya T., Kempf S., Horányi M. et al., Ongoing hydrothermal activities within Enceladus, Nature, 519 (2015) 207.

    Article  ADS  Google Scholar 

  163. Teolis B. D., Jones G. H., Miles P. F., Tokar R. L., Magee B. A., Waite J. H. et al., Cassini finds an oxygen-carbon dioxide atmosphere at Saturn’s icy moon Rhea, Science, 330 (2010) 1813.

    Article  ADS  Google Scholar 

  164. Anderson J. D. and Schubert G., Saturn’s satellite Rhea is a homogeneous mix of rock and ice, Geophys. Res. Lett., 34 (2007) L02202.

    ADS  Google Scholar 

  165. Anderson J. D. and Schubert G., Rhea’s gravitational field and interior structure inferred from archival data files of the 2005 Cassini flyby, Phys. Earth Planet. Interiors, 178 (2010) 176.

    Article  ADS  Google Scholar 

  166. Mackenzie R. A., Antreasian P. G., Bordi J. J., Criddle K. E., Ionasescu R., Jacobson R. A. et al., A determination of Rhea’s gravity field from Cassini navigation analysis, in Proceedings of the AAS/AIAA 17th Space Flight Mechanics Meetings (2007).

  167. Mackenzie R. A., Iess L., Tortora P. and Rappaport N. J., A non-hydrostatic Rhea, Geophys. Res. Lett., 35 (2008) L05204.

    Article  ADS  Google Scholar 

  168. Iess L., Rappaport N. J., Tortora P., Lunine J., Armstrong J. W., Asmar S. W. et al., Gravity field and interior of Rhea from Cassini data analysis, Icarus, 190 (2007) 585.

    Article  ADS  Google Scholar 

  169. Tortora P., Zannoni M., Hemingway D., Nimmo F., Jacobson R. A., Iess L. and Parisi M., Rhea gravity field and interior modeling from Cassini data analysis, Icarus, 264 (2016) 264.

    Article  ADS  Google Scholar 

  170. Burch J. L., Goldstein J., Lewis W. S., Young D. T., Coates A. J., Dougherty M. K. and André N., Tethys and Dione as sources of outward-flowing plasma in Saturn’s magnetosphere, Nature, 447 (2007) 833.

    Article  ADS  Google Scholar 

  171. Buratti B. J., Hansen C. J., Hendrix A. R., Esposito L. W., Mosher J. A., Brown R. H., Clark R. N., Baines K. H., Nicholson P. D., The Search for Activity on Dione and Tethys With Cassini VIMS and UVIS, Geophys. Res. Lett., 45 (2018) 5860.

    ADS  Google Scholar 

  172. Nordheim T. A., Jones G. H., Roussos E., Leisner J. S., Coates A. J., Kurth W. S., Khurana K. K., Krupp N., Dougherty M. K. and Waite J. H., Detection of a strongly negative surface potential at Saturn’s moon Hyperion, Geophys. Res. Lett., 41 (2014) 7011.

    Article  ADS  Google Scholar 

  173. Charnoz S., Porco C. C., Deau E., Brahic A., Spitale J. N., Bacques G. and Baillie K., Cassini Discovers a Kinematic Spiral Ring Around Saturn, Science, 310 (2005) 1300.

    Article  ADS  Google Scholar 

  174. Mitchell C. J., Horanyi M., Havnes O. and Porco C. C., Saturn’s Spokes: Lost and Found, Science, 311 (2006) 1587.

    Article  ADS  Google Scholar 

  175. Murray C. D., Beurle K., Cooper N. J., Evans M. W., Williams G. A. and Charnoz S., The determination of the structure of Saturn’s F ring by nearby moonlets, Nature, 453 (2008) 739.

    Article  ADS  Google Scholar 

  176. Tiscareno M. S., Burns J. A., Hedman M. M., Porco C. C., Weiss J. W., Dones L., Richardson D. C. and Murray C. D., 100-metre-diameter moonlets in Saturn’s A ring from observations of propeller structures, Nature, 440 (2006) 648.

    Article  ADS  Google Scholar 

  177. Tiscareno M. S., Nicholson P. D., Burns J. A., Hedman M. M. and Porco C. C., Unravelling Temporal Variability in Saturn’s Spiral Density Waves: Results and Predictions, Astrophys. J., 651 (2006) L65.

    Article  ADS  Google Scholar 

  178. Desch M. D. and Kaiser M. L., Voyager measurement of the rotation period of Saturn’s magnetic field, Geophys. Res. Lett., 8 (1981) 253.

    Article  ADS  Google Scholar 

  179. Gurnett D. A. et al., Radio and Plasma Wave Observations at Saturn from Cassini’s Approach and First Orbit, Science, 307 (2005) 1255.

    Article  ADS  Google Scholar 

  180. Anderson J. D. and Schubert G., Saturn’s Gravitational Field, Internal Rotation, and Interior Structure, Science, 317 (2007) 1384.

    Article  ADS  Google Scholar 

  181. Read P. L., Dowling T. E. and Schubert G., Saturn’s rotation period from its atmospheric planetary-wave configuration, Nature, 460 (2009) 608.

    Article  ADS  Google Scholar 

  182. Gurnett D. A., Persoon A. M., Kurth W. S., Groene J. B., Averkamp T. F., Dougherty M. K. and Southwood D. J., The Variable Rotation Period of the Inner Region of Saturn’s Plasma Disk, Science, 316 (2007) 442.

    Article  ADS  Google Scholar 

  183. Gurnett D. A., Lecacheux A., Kurth W. S., Persoon A. M., Groene J. B., Lamy L., Zarka P. and Carbary J. F., Discovery of a north-south asymmetry in Saturn’s radio rotation period, Geophys. Res. Lett., 36 (2009) L16102.

    Article  ADS  Google Scholar 

  184. Lainey V. et al., Strong Tidal Dissipation in Saturn and Constraints on Enceladus’ Thermal State from Astrometry, Astrophys. J., 752 (2012) 14.

    Article  ADS  Google Scholar 

  185. Lainey V. et al., New constraints on Saturn’s interior from Cassini astrometric data, Icarus, 281 (2017) 286.

    Article  ADS  Google Scholar 

  186. Dyudina U. A., Ingersoll A. P., Ewald S. P., Porco C. C., Fischer G., Kurth W., Desch M., Del Genio A., Barbara J. and Ferrier J., Lightning storms on Saturn observed by Cassini ISS and RPWS during 2004–2006, Icarus, 190 (2007) 545.

    Article  ADS  Google Scholar 

  187. Baines K. H., Momary T. W., Fletcher L. N., Showman A. P., Roos-Serote M., Brown R. H., Buratti B. J., Clark R. N. and Nicholson P. D., Saturn’s north polar cyclone and hexagon at depth revealed by Cassini VIMS, Planetary Space Sci., 57 (2009) 1671.

    Article  ADS  Google Scholar 

  188. Sayanagi K. M., Blalock J. J., Dyudina U. A., Ewald S. P. and Ingersoll A. P., Cassini ISS observation of Saturn’s north polar vortex and comparison to the south polar vortex, Icarus, 285 (2017) 68.

    Article  ADS  Google Scholar 

  189. Fischer G. et al., A giant thunderstorm on Saturn, Nature, 475 (2011) 75.

    Article  ADS  Google Scholar 

  190. Sayanagi K. M., Dyudina U. A., Ewald S. P., Fischer G., Ingersoll A. P., Kurth W. S., Muro G. D., Porco C. C. and West R. A., Dynamics of Saturn’s great storm of 2010–2011 from Cassini ISS and RPWS, Icarus, 223 (2013) 460.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Flamini, E., Adriani, A., Armstrong, J.W. et al. A unique mission: Cassini-Huygens, the Orbiter, the descent Probe and the cruise science. Riv. Nuovo Cim. 42, 197–259 (2019). https://doi.org/10.1393/ncr/i2019-10159-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1393/ncr/i2019-10159-y

Navigation