Skip to main content
Log in

Development and validation of an HPTLC–DPPH assay and its application to the analysis of honey

  • Original Research Paper
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Using honey as a model sample, the aim of this study is to develop and validate a simple, rapid screening tool that allows for the visualization of constituents that contribute to the antioxidant activity of a complex natural product and to quantify their individual antioxidant effects even if their chemical identity is unknown. The method employs a validated analysis, which is based on the separation of constituents using high-performance thin-layer chromatography (HPTLC) followed by their visualization using DPPH* (2,2-diphenyl-1-picrylhydrazyl) as derivatizing reagent and the quantification of the antioxidant activity of individual bands expressed as gallic acid equivalents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Blois MS (1958) Antioxidant determinations by the use of a stable free radical. Nature 181(4617):1199–1200. https://doi.org/10.1038/1811199a0

    Article  CAS  Google Scholar 

  2. Romanet R, Coelho C, Liu Y, Bahut F, Ballester J, Nikolantonaki M, Gougeon RD (2019) The antioxidant potential of white wines relies on the chemistry of sulfur-containing compounds: an optimized DPPH assay. Molecules 24(7):1353. https://doi.org/10.3390/molecules24071353

    Article  CAS  PubMed Central  Google Scholar 

  3. Shimoji Y, Tamura Y, Nakamura Y, Nanda K, Nishidai S, Nishikawa Y, Ishihara N, Uenakai K, Ohigashi H (2002) Isolation and identification of DPPH radical scavenging compounds in Kurosu (Japanese unpolished rice vinegar). J Agric Food Chem 50(22):6501–6503. https://doi.org/10.1021/jf020458f

    Article  CAS  PubMed  Google Scholar 

  4. Matsuura H, Chiji H, Asakawa C, Amano M, Yoshihara T, Mizutani J (2003) DPPH radical scavengers from dried leaves of oregano (Origanum vulgare). Biosci Biotechnol Biochem 67(11):2311–2316. https://doi.org/10.1271/bbb.67.2311

    Article  CAS  PubMed  Google Scholar 

  5. Mohamad H, Abas F, Permana D, Lajis NH, Ali AM, Sukari MA, Hin TY, Kikuzaki H, Nakatani N (2004) DPPH free radical scavenger components from the fruits of Alpinia rafflesiana Wall. ex. Bak. (Zingiberaceae). Z Naturforsch C 59(11–12):811–815. https://doi.org/10.1515/znc-2004-11-1208

    Article  CAS  PubMed  Google Scholar 

  6. Marxen K, Vanselow KH, Lippemeier S, Hintze R, Ruser A, Hansen UP (2007) Determination of DPPH radical oxidation caused by methanolic extracts of some microalgal species by linear regression analysis of spectrophotometric measurements. Sensors (Basel) 7(10):2080–2095. https://doi.org/10.3390/s7102080

    Article  CAS  Google Scholar 

  7. Gawron-Skarbek A, Guligowska A, Prymont-Przyminska A, Nowak D, Kostka T (2018) Plasma and salivary non-urate total antioxidant capacity does not depend on dietary vitamin C, E, or beta-carotene intake in older subjects. Molecules 23(4):983. https://doi.org/10.3390/molecules23040983

    Article  CAS  PubMed Central  Google Scholar 

  8. Liang N, Kitts D (2014) Antioxidant property of coffee components: assessment of methods that define mechanisms of action. Molecules 19:19180–19208. https://doi.org/10.3390/molecules191119180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawabata J, Okamoto Y, Kodama A, Makimoto T, Kasai T (2002) Oxidative dimers produced from protocatechuic and gallic esters in the DPPH radical scavenging reaction. J Agric Food Chem 50(19):5468–5471. https://doi.org/10.1021/jf020347g

    Article  CAS  PubMed  Google Scholar 

  10. Kedare SB, Singh RP (2011) Genesis and development of DPPH method of antioxidant assay. J Food Sci Technol 48(4):412–422. https://doi.org/10.1007/s13197-011-0251-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Matsufuji H, Kido H, Misawa H, Yaguchi J, Otsuki T, Chino M, Takeda M, Yamagata K (2007) Stability to light, heat, and hydrogen peroxide at different pH values and DPPH radical scavenging activity of acylated anthocyanins from red radish extract. J Agric Food Chem 55(9):3692–3701. https://doi.org/10.1021/jf063598o

    Article  CAS  PubMed  Google Scholar 

  12. Milardovic S, Ivekovic D, Grabaric BS (2006) A novel amperometric method for antioxidant activity determination using DPPH free radical. Bioelectrochemistry 68(2):175–180. https://doi.org/10.1016/j.bioelechem.2005.06.005

    Article  CAS  PubMed  Google Scholar 

  13. Rehakova Z, Koleckar V, Cervenka F, Jahodar L, Saso L, Opletal L, Jun D, Kuca K (2008) DPPH radical scavenging activity of several naturally occurring coumarins and their synthesized analogs measured by the SIA method. Toxicol Mech Methods 18(5):413–418. https://doi.org/10.1080/15376510701511448

    Article  CAS  PubMed  Google Scholar 

  14. Cheng Z, Moore J, Yu L (2006) High-throughput relative DPPH radical scavenging capacity assay. J Agric Food Chem 54(20):7429–7436. https://doi.org/10.1021/jf0611668

    Article  CAS  PubMed  Google Scholar 

  15. Villano D, Fernandez-Pachon MS, Moya ML, Troncoso AM, Garcia-Parrilla MC (2007) Radical scavenging ability of polyphenolic compounds towards DPPH free radical. Talanta 71(1):230–235. https://doi.org/10.1016/j.talanta.2006.03.050

    Article  CAS  PubMed  Google Scholar 

  16. Chen Z, Bertin R, Froldi G (2013) EC50 estimation of antioxidant activity in DPPH. assay using several statistical programs. Food Chem 138(1):414–420. https://doi.org/10.1016/j.foodchem.2012.11.001

    Article  CAS  PubMed  Google Scholar 

  17. Song HS, Bae JK, Park I (2013) Effect of heating on DPPH radical scavenging activity of meat substitute. Prev Nutr Food Sci 18(1):80–84. https://doi.org/10.3746/pnf.2013.18.1.080

    Article  PubMed  PubMed Central  Google Scholar 

  18. Lebeau J, Furman C, Bernier JL, Duriez P, Teissier E, Cotelle N (2000) Antioxidant properties of di-tert-butylhydroxylated flavonoids. Free Radic Biol Med 29(9):900–912. https://doi.org/10.1016/s0891-5849(00)00390-7

    Article  CAS  PubMed  Google Scholar 

  19. Kim J-K, Abdel-Zaher NA, Lee S, Sue TACJ, Suh H, Young TACH, Ok TASY, Won-Chul TAC (2002) The first total synthesis of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) and its antioxidant activity (the first total synthesis of 2,3,6-tribromo-4,5-dihydroxybenzyl methyl ether (TDB) and its antioxidant activity). Bull Kor Chem Soc 23:661–662. https://doi.org/10.5012/BKCS.2002.23.5.661

    Article  CAS  Google Scholar 

  20. Achat S, Rakotomanomana N, Madani K, Dangles O (2016) Antioxidant activity of olive phenols and other dietary phenols in model gastric conditions: scavenging of the free radical DPPH and inhibition of the haem-induced peroxidation of linoleic acid. Food Chem 213:135–142. https://doi.org/10.1016/j.foodchem.2016.06.076

    Article  CAS  PubMed  Google Scholar 

  21. Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5

    Article  CAS  Google Scholar 

  22. Yepez B, Espinosa M, López S, Bolaños G (2002) Producing antioxidant fractions from herbaceous matrices by supercritical fluid extraction. Fluid Phase Equilib 194-197:879–884. https://doi.org/10.1016/S0378-3812(01)00707-5

    Article  CAS  Google Scholar 

  23. Ristivojevic P, Trifkovic J, Vovk I, Milojkovic-Opsenica D (2017) Comparative study of different approaches for multivariate image analysis in HPTLC fingerprinting of natural products such as plant resin. Talanta 162:72–79. https://doi.org/10.1016/j.talanta.2016.10.023

    Article  CAS  PubMed  Google Scholar 

  24. Amina M, Alam P, Parvez MK, Al-Musayeib NM, Al-Hwaity SA, Al-Rashidi NS, Al-Dosari MS (2018) Isolation and validated HPTLC analysis of four cytotoxic compounds, including a new sesquiterpene from aerial parts of Plectranthus cylindraceus. Nat Prod Res 32(7):804–809. https://doi.org/10.1080/14786419.2017.1363750

    Article  CAS  PubMed  Google Scholar 

  25. Ladda PL, Magdum CS (2018) Antitubercular activity and isolation of chemical constituents from plant Vitex negundo Linn. Iran J Pharm Res 17(4):1353–1360

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Scotti F, Lobel K, Booker A, Heinrich M (2018) St. John’s Wort (Hypericum perforatum) products - how variable is the primary material? Front Plant Sci 9:1973. https://doi.org/10.3389/fpls.2018.01973

    Article  PubMed  Google Scholar 

  27. Chauhan S, Sharma A, Upadhyay NK, Singh G, Lal UR, Goyal R (2018) In-vitro osteoblast proliferation and in-vivo anti-osteoporotic activity of Bombax ceiba with quantification of Lupeol, gallic acid and beta-sitosterol by HPTLC and HPLC. BMC Complement Altern Med 18(1):233. https://doi.org/10.1186/s12906-018-2299-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Agatonovic-Kustrin S, Morton DW, Yusof AP (2016) Development and validation of a simple high performance thin layer chromatography method combined with direct 1,1-diphenyl-2-picrylhydrazyl assay to quantify free radical scavenging activity in wine. Food Chem 197(Pt A):285–290. https://doi.org/10.1016/j.foodchem.2015.10.128

    Article  CAS  PubMed  Google Scholar 

  29. Agatonovic-Kustrin S, Morton DW, Ristivojevic P (2016) Assessment of antioxidant activity in Victorian marine algal extracts using high performance thin-layer chromatography and multivariate analysis. J Chromatogr A 1468:228–235. https://doi.org/10.1016/j.chroma.2016.09.041

    Article  CAS  PubMed  Google Scholar 

  30. Ibrahim RS, Khairy A, Zaatout HH, Hammoda HM, Metwally AM (2018) Digitally-optimized HPTLC coupled with image analysis for pursuing polyphenolic and antioxidant profile during alfalfa sprouting. J Chromatogr B Anal Technol Biomed Life Sci 1099:92–96. https://doi.org/10.1016/j.jchromb.2018.09.021

    Article  CAS  Google Scholar 

  31. Wang L, Chen YS, Ye ZY, Hellmann B, Xu XM, Jin ZY, Ma QQ, Yang N, Wu FF, Jin YM (2018) Screening of phenolic antioxidants in edible oils by HPTLC-DPPH assay and MS confirmation. Food Anal Methods 11(11):3170–3178. https://doi.org/10.1007/s12161-018-1295-x

    Article  Google Scholar 

  32. Anand S, Pang E, Livanos G, Mantri N (2018) Characterization of physico-chemical properties and antioxidant capacities of bioactive honey produced from Australian grown Agastache rugosa and its correlation with colour and poly-phenol content. Molecules 23(1):108. https://doi.org/10.3390/molecules23010108

    Article  CAS  PubMed Central  Google Scholar 

  33. Chepulis L (2015) Honey – food or medicine? The how, where, and why of bioactivity testing. Bee World 92(4):112–115. https://doi.org/10.1080/0005772X.2016.1152847

    Article  Google Scholar 

  34. Khan FR, Ul Abadin Z, Rauf N (2007) Honey: nutritional and medicinal value. Int J Clin Pract 61(10):1705–1707. https://doi.org/10.1111/j.1742-1241.2007.01417.x

    Article  CAS  PubMed  Google Scholar 

  35. Mandal MD, Mandal S (2011) Honey: its medicinal property and antibacterial activity. Asian Pac J Trop Biomed 1(2):154–160. https://doi.org/10.1016/s2221-1691(11)60016-6

    Article  PubMed  PubMed Central  Google Scholar 

  36. Molan P (2001) Why honey is effective as a medicine. Bee World 82(1):22–40. https://doi.org/10.1080/0005772X.2001.11099498

    Article  Google Scholar 

  37. Di Marco G, Gismondi A, Panzanella L, Canuti L, Impei S, Leonardi D, Canini A (2018) Botanical influence on phenolic profile and antioxidant level of Italian honeys. J Food Sci Technol 55(10):4042–4050. https://doi.org/10.1007/s13197-018-3330-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Payet B, Shum Cheong Sing A, Smadja J (2005) Assessment of antioxidant activity of cane brown sugars by ABTS and DPPH radical scavenging assays: determination of their polyphenolic and volatile constituents. J Agric Food Chem 53(26):10074–10079. https://doi.org/10.1021/jf0517703

    Article  CAS  PubMed  Google Scholar 

  39. Singh N, Sharma R, Balapure AK (2007) pH regulated scavenging activity of beer antioxidants through modified DPPH assay. Toxicol Ind Health 23(2):75–81. https://doi.org/10.1177/0748233707077429

    Article  CAS  PubMed  Google Scholar 

  40. Gul A, Pehlivan T (2018) Antioxidant activities of some monofloral honey types produced across Turkey. Saudi J Biol Sci 25(6):1056–1065. https://doi.org/10.1016/j.sjbs.2018.02.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Locher C, Neumann J, Sostaric T (2017) Authentication of honeys of different floral origins via high-performance thin-layer chromatographic fingerprinting. J Planar Chromatogr Mod TLC 30(1):57–62. https://doi.org/10.1556/1006.2017.30.1.8

  42. Locher C, Tang E, Neumann J, Sostaric T (2018) High-performance thin-layer chromatography profiling of Jarrah and Manuka honeys. J Planar Chromatogr Mod TLC 31(3):181–189. https://doi.org/10.1556/1006.2018.31.3.1

  43. Stanek N, Jasicka-Misiak I (2018) HPTLC phenolic profiles as useful tools for the authentication of honey.(report). Food Anal Methods 11(11):2979–2989. https://doi.org/10.1007/s12161-018-1281-3

    Article  Google Scholar 

  44. Borman P, Elder D (2017) Q2(R1) Validation of Analytical Procedures: Text and Methodology. In A Teasdale, D Elder and RM Nims (Eds) ICHQuality Guidelines: An Implementation Guide. John Wiley & Sons, Brisbane (pp. 127-166).

  45. Agatonovic-Kustrin S, Kustrin E, Gegechkori V, Morton DW (2019) High-performance thin-layer chromatography hyphenated with microchemical and biochemical derivatizations in bioactivity profiling of marine species. Mar Drugs 17(3):148. https://doi.org/10.3390/md17030148

    Article  CAS  PubMed Central  Google Scholar 

  46. Zhang YZ, Wang S, Chen YF, Wu YQ, Tian J, Si JJ, Zhang CP, Zheng HQ, Hu FL (2019) Authentication of Apis cerana honey and Apis mellifera honey based on major royal jelly protein 2 gene. Molecules 24(2):289. https://doi.org/10.3390/molecules24020289

    Article  CAS  PubMed Central  Google Scholar 

  47. Agatonovic-Kustrin S, Hettiarachchi CG, Morton DW, Razic S (2015) Analysis of phenolics in wine by high performance thin-layer chromatography with gradient elution and high resolution plate imaging. J Pharm Biomed Anal 102:93–99. https://doi.org/10.1016/j.jpba.2014.08.031

    Article  CAS  PubMed  Google Scholar 

  48. Alvarez-Suarez JM, Gasparrini M, Forbes-Hernández TY, Mazzoni L, Giampieri F (2014) The composition and biological activity of honey: a focus on Manuka honey. Foods 3(3):420–432. https://doi.org/10.3390/foods3030420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Chromatech Scientific for their technical support of this project.

Funding

This research was supported by funding from the Cooperative Research Centre for Honey Bee Products (Project 13) and the use of samples from AgriFutures Australia (PRJ-010313).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cornelia Locher.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 14.1 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Islam, M.K., Sostaric, T., Lim, L.Y. et al. Development and validation of an HPTLC–DPPH assay and its application to the analysis of honey. JPC-J Planar Chromat 33, 301–311 (2020). https://doi.org/10.1007/s00764-020-00033-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-020-00033-0

Keywords

Navigation